首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a very simple integer program involving production of a single item and start-up costs for the standard machines first studied by Lasdon and Terjung. Solving directly as an integer program leads to prohibitively large branch and bound trees. Here, we show how using a simple family of valid inequalities and a heuristic procedure to choose one of these inequalities as a cut, it is possible to reduce substantially the size of the tree, and in several cases to eliminate the need for branch and bound. The valid inequalities used are all simple Gomory cuts. However, they are derived from the initial problem formulation rather than from the optimal linear programming tableau.  相似文献   

2.
We addresses a variant of the classical one dimensional bin-packing problem where several types of bins with unequal sizes and costs are presented. Each bin-type includes limited and/or unlimited identical bins. The goal is to minimize the total cost of bins needed to store a given set of items, each item with some space requirements. Four new heuristics to solve this problem are proposed, developed and compared. The experiments results show that higher quality solutions can be obtained using the proposed algorithms.  相似文献   

3.
Companies that maintain capital goods (e.g., airplanes or power plants) often face high costs, both for holding spare parts and due to downtime of their technical systems. These costs can be reduced by pooling common spare parts between multiple companies in the same region, but managers may be unsure about how to share the resulting costs or benefits in a fair way that avoids free riders. To tackle this problem, we study several players, each facing a Poisson demand process for an expensive, low-usage item. They share a stock point that is controlled by a continuous-review base stock policy with full backordering under an optimal base stock level. Costs consist of penalty costs for backorders and holding costs for on-hand stock. We propose to allocate the total costs proportional to players’ demand rates. Our key result is that this cost allocation rule satisfies many appealing properties: it makes all separate participants and subgroups of participants better off, it stimulates growth of the pool, it can be easily implemented in practice, and it induces players to reveal their private information truthfully. To obtain these game theoretical results, we exploit novel structural properties of the cost function in our (S − 1, S) inventory model.  相似文献   

4.
In the context of production activity, several parameters play an important role in the total cost estimation and its optimization. These parameters include facility setup cost, inventory carrying cost, and manufacturing cost for the basic model. Shortages can be incorporated in certain environment and costs associated with shortages need to be included in the analysis. It is expected that the industries will run their manufacturing facility at an optimum level. In the multi-product manufacture, optimum common cycle time approach is usually adopted and all the items are produced in each cycle. A situation may occur in the real world, in which a particular parameter concerning an item is exchanged with that of another item. It is of interest to examine the aftereffects. Otherwise also, for the purpose of internal benchmarking, a deliberate exchange of parameters can take place. This can be implemented in case of cost improvement. A generalized approach is presented and discussion is made with reference to various parameters.  相似文献   

5.
We consider a manufacturing system with product recovery. The system manufactures a new product as well as remanufactures the product from old, returned items. The items remanufactured with the returned products are as good as new and satisfy the same demand as the new item. The demand rate for the new item and the return rate for the old item are deterministic and constant. The relevant costs are the holding costs for the new item and the returned item, and the fixed setup costs for both manufacturing and remanufacturing. The objective is to determine the lot sizes and production schedule for manufacturing and remanufacturing so as to minimize the long-run average cost per unit time. We first develop a lower bound among all classes of policies for the problem. We then show that the optimal integer ratio policy for the problem obtains a solution whose cost is at most 1.5% more than the lower bound.  相似文献   

6.
We consider a multi-item lot-sizing problem with joint set-up costs and constant capacities. Apart from the usual per unit production and storage costs for each item, a set-up cost is incurred for each batch of production, where a batch consists of up to C units of any mix of the items. In addition, an upper bound on the number of batches may be imposed. Under widely applicable conditions on the storage costs, namely that the production and storage costs are nonspeculative, and for any two items the one that has a higher storage cost in one period has a higher storage cost in every period, we show that there is a tight linear program with O(mT 2) constraints and variables that solves the joint set-up multi-item lot-sizing problem, where m is the number of items and T is the number of time periods. This establishes that under the above storage cost conditions this problem is polynomially solvable. For the problem with backlogging, a similar linear programming result is described for the uncapacitated case under very restrictive conditions on the storage and backlogging costs. Computational results are presented to test the effectiveness of using these tight linear programs in strengthening the basic mixed integer programming formulations of the joint set-up problem both when the storage cost conditions are satisfied, and also when they are violated.  相似文献   

7.
In this paper, we propose an optimisation model to determine the product assortment, inventory replenishment, display area and shelf space allocation decisions that jointly maximize the retailer’s profit under shelf space and backroom storage constraints. The variety of products to be displayed in the retail store, their display locations within the store, their ordering quantities, and the allocated shelf space in each display area are considered as decision variables to be determined by the proposed integrated model. In the model formulation, we include the inventory investment costs, which are proportional to the average inventory, and storage and display costs as components of the inventory costs and make a clear distinction between showroom and backroom inventories. We also consider the effect of the display area location on the item demand. The developed model is a mixed integer non-linear program that we solved using LINGO software. Numerical examples are used to illustrate the developed model.  相似文献   

8.
The paper deals with the stochastic optimal intervention problem which arises in a production & storage system involving identical items. The requests for items arrive at random and the production of an item can be interrupted during production to meet the corresponding demand. The operational costs considered are due to the stock/backlog, running costs and set up costs associated to interruptions and re-initializations. The process presents distinct behaviour on each of two disjoint identical subsets of the state space, and the state process can only be transferred from one subset to the other by interventions associated to interruptions/re-initializations. A characterization is given in terms of piecewise deterministic Markov process, which explores the aforementioned structure, and a method of solution with assured convergence, that does not require any special initialization, is provided.Additionally, we demonstrate that under conditions on the data, the optimal policy is to produce the item completely in a certain region of the state space of low stock level.  相似文献   

9.
This paper develops a production-inventory model for a deteriorating item with stock-dependent demand under two storage facilities over a random planning horizon, which is assumed to follow exponential distribution with known parameter. The effects of learning in set-up, production, selling and reduced selling is incorporated. Different inflation rates for various inventory costs and time value of money are also considered. A hybrid genetic algorithm is designed to solve the optimization problem which is hard to solve with existing algorithms due to the complexity of the decision variable. To illustrate the model and to show the effectiveness of the proposed approach a numerical example is provided. A sensitivity analysis of the optimal solution with respect to the parameters of the system is carried out.  相似文献   

10.
In this paper, an optimal production inventory model with fuzzy time period and fuzzy inventory costs for defective items is formulated and solved under fuzzy space constraint. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The defective rate is taken as random, the inventory holding cost and production cost are imprecise. The fuzzy parameters are converted to crisp ones using credibility measure theory. The different items have the different imprecise time periods and the minimization of cost for each item leads to a multi-objective optimization problem. The model is under the single management house and desired inventory level and product cost for each item are prescribed. The multi-objective problem is reduced to a single objective problem using Global Criteria Method (GCM) and solved with the help of Fuzzy Riemann Integral (FRI) method, Kuhn–Tucker condition and Generalised Reduced Gradient (GRG) technique. In optimum results including production functions and corresponding optimum costs for the different models are obtained and then are presented in tabular forms.  相似文献   

11.
This paper submits a mathematical model called the two-itemized drugs purchasing decision (TDPD) model to conduct the optimal purchase of two-itemized drugs for healing a given disease. This TDPD model considers not only the annual estimated number of patients suffering from the given disease, the treatment courses, and the unit profit of each drug, but also the strength of the patient's perception on treatment quality, the different purchasing price of each drug with quantity discounts, the ordering cost, the holding cost, and other related costs to determine the optimal order quantity of each drug for achieving the maximum profit. A computerized solving program proposed in this paper applies tabu search technique as the main program and the all-units quantity discounts for economic order quantity as the sub-program to solve such a combinatorial problem, as well as perform sensitivity analyses on the changes by the strength of the patient's perception on treatment quality and the changes of annual estimated number of patients for the given disease. Two drugs, Lipitor and Gemnpid, to heal a disease ‘Hyperlipidaemia’ are considered as a case example in this study. This paper contributes a prototype quantitative method of purchasing decision for a given disease to a decision-maker with profound insights.  相似文献   

12.
This paper deals with an extended EOQ-type inventory model for a perishable product where the demand rate is a function of the on-hand inventory. The traditional parameters of unit item cost and ordering cost are kept constant; but the holding cost is treated as (i) a nonlinear function of the length of time for which the item is held in stock, and (ii) a functional form of the amount of the on-hand inventory. The approximate optimal solution in both the cases are derived. Computational results are presented indicating the effects of nonlinearity in holding costs.  相似文献   

13.
Offshore countries attract companies for a possible relocation of production processes through extremely low worker wages. Particularly, mass production processes seem to be highly appropriate for a relocation. However, while the impact of wage reductions can be directly estimated, an appropriate determination of additional cost consequences proves to be a complex task. For instance, on account of lower education standards and higher fluctuation rates, the average worker skills in offshore countries are often significantly lower than in high-wage countries like the United States. In order to appropriately analyze and evaluate the resulting tradeoff between wages and worker skills for mass customization manufacturing systems, this paper introduces a new approach that comprises a detailed mixed-model assembly line balancing. This approach provides a direct comparison of the estimated variable manufacturing costs by generating a country-dependent line layout for all competing locations. In order to validate the efficiency of the balancing approach and, in particular, derive general implications for management, several test series with various country configurations were executed. First, by attaining improvement rates of up to 40%, the capability of a generated Tabu Search procedure for finding appropriate line layouts was proven. Second, as the main result, the complexity of the variant program was identified as a crucial factor for offshoring decisions since it substantially affects variable manufacturing costs. This was particularly proven for countries with low worker skills, which attract offshoring/nearshoring through exceptionally low labor costs. Hence, companies that consider outsourcing production systems to those countries are strongly hold to examine these decisive effects thoroughly. Regarding this, offshoring becomes very promising for manufacturing processes characterized by a moderate variant complexity level.  相似文献   

14.
Several types of regulations limit the amount of different emissions that a firm may create from its production processes. Depending on the emission, these regulations could include threshold values, penalties and taxes, and/or emission allowances that can be traded. However, many firms try to comply with these regulations without a systematic plan, often leading not only to emission violations and high penalties, but also to high costs. In this paper, we present two mathematical models that can be used by firms to determine their optimal product mix and production quantities in the presence of several different types of environmental constraints, in addition to typical production constraints. Both models are comprehensive and incorporate several diverse production and environmental issues. The first model, which assumes that each product has just one operating procedure, is a linear program while the second model, which assumes that the firm has the option of producing each product using more than one operating procedure, is a mixed integer linear program. The solutions of both models identify the products that the firm should produce along with their production quantities. These models can be used by firms to quickly analyze several “what if” scenarios such as the impact of changes in emission threshold values, emission taxes, trading allowances, and trading transaction costs.  相似文献   

15.
This paper deals with the situation of a number of end items, each facing uncertain demand in a single period of interest. Besides being able to purchase units of the end items there is also available a stock of units that can be converted into end items but at unit costs that depend on the specific end item. Efficient solution procedures are presented for two situations: (i) where the end item demand distributions are assumed known (illustrated for the case of normally distributed demand) and (ii) a distribution free approach where only the first two moments of the distributions are assumed known. Computational results for a set of problems are presented.  相似文献   

16.
In this paper, a production-repairing inventory model in fuzzy rough environment is proposed incorporating inflationary effects where a part of the produced defective units are repaired and sold as fresh units. Here, production and repairing rates are assumed as dynamic control variables. Due to complexity of environment, different costs and coefficients are considered as fuzzy rough type and these are reduced to crisp ones using fuzzy rough expectation. Here production cost is production rate dependent, repairing cost is repairing rate dependent and demand of the item is stock-dependent. Goal of the research work is to find decisions for the decision maker (DM) who likes to maximize the total profit from the above system for a finite time horizon. The model is formulated as an optimal control problem and solved using a gradient based non-linear optimization method. Some particular cases of the general model are derived. The results of the models are illustrated with some numerical examples.  相似文献   

17.
回收率依赖价格的再制造EPQ模型研究   总被引:1,自引:0,他引:1  
研究了考虑回收率依赖于回收品价格,并带有废弃处理的制造和再制造混合系统的(1,R)和(M,1)EPQ模型.在模型中,采用新产品的制造和回收产品的再制造两种方式来满足客户的需要,回收产品部分用于再制造,其余作为废弃处理;总平均成本包括与回收产品、可销售产品有关的库存持有成本,与制造和再制造有关的生产成本和固定成本,与回收品及制造所需原材料的采购成本以及废弃处理成本.模型给出最优生产策略及总平均成本的表达式.算例验证了所建模型的计算方法,并分析了新引人决策变量p(回收产品单价占制造新产品所需原料价格的比例对总平均成本的变化率的影响.  相似文献   

18.
In most multi-item inventory systems, the ordering costs consist of a major cost and a minor cost for each item included. Applying for every individual item a cyclic inventory policy, where the cycle length is a multiple of some basic cycle time, reduces the major ordering costs. An efficient algorithm to determine the optimal policy of this type is discussed in this paper. It is shown that this algorithm can be used for deterministic multi-item inventory problems, with general cost rate functions and possibly service level constraints, of which the well-known joint replenishment problem is a special case. Some useful results in determining the optimal control parameters are derived, and worked out for piecewise linear cost rate functions. Numerical results for this case show that the algorithm significantly outperforms other solution methods, both in the quality of the solution and in the running time.  相似文献   

19.
In this paper we study a single-item lot-sizing model in which production capacity can be adjusted from time to time. There are a number of different production capacity levels available to be acquired in each period, where each capacity level is assumed to be a multiple of a base capacity unit. To reduce the waste of excess of capacity but guarantee meeting the demand, it is important to decide which level of capacity should be acquired and how many units of the item should be produced for every period in the planning horizon. Capacity adjustment cost incurs when capacity acquired in the current period differs from the one acquired in the previous period. Capacity acquisition costs, capacity adjustment costs, and production costs in each period are all time-varying and depend on the capacity level acquired in that period. Backlogging is allowed. Both production costs and inventory costs are assumed to be general concave. We provide optimal properties and develop an efficient exact algorithm for the general model. For the special cases with zero capacity adjustment costs or fixed-plus-linear production costs, we present a faster exact algorithm. Computational experiments show that our algorithm is able to solve medium-size instances for the general model in a few seconds, and that cost can be reduced significantly through flexible capacity adjustment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号