首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A near-optimum parallel algorithm for solving facility layout problems is presented in this paper where the problem is NP-complete. The facility layout problem is one of the most fundamental quadratic assignment problems in Operations Research. The goal of the problem is to locate N facilities on an N-square (location) array so as to minimize the total cost. The proposed system is composed of N × N neurons based on an artificial two-dimensional maximum neural network for an N-facility layout problem. Our algorithm has given improved solutions for several benchmark problems over the best existing algorithms.  相似文献   

2.
The effect of workflow interference is a major concern in facility layout design. Yet, despite the extensive amount of research conducted on the facility layout problem, very little has been done to incorporate interference as part of an overall approach to layout design. This paper examines the impact of workflow interference considerations on facility layout analyses. Linear and nonlinear integer programming formulations of the problem are presented. The structural properties of the resulting formulations, as applied to facility design, are investigated. Finally, a multi-objective approach to facility layout design is presented, incorporating the traditional distance-based objective with that of workflow interference.  相似文献   

3.
The facility layout problem is concerned with finding the most efficient arrangement of a given number of departments with unequal area requirements within a facility. The facility layout problem is a hard problem, and therefore, exact solution methods are only feasible for small or greatly restricted problems. In this paper, we propose a spring-embedding approach that unlike previous approaches results in a model that is convex. Numerical results demonstrating the potential of our model and the efficiency of our solution procedure are presented.  相似文献   

4.
The facility layout problem (FLP) has many practical applications and is known to be NP-hard. During recent decades exact and heuristic approaches have been proposed in the literature to solve FLPs. In this paper we review the most recent developments regardingsimulated annealing and genetic algorithms for solvingfacility layout problems approximately.  相似文献   

5.
The unequal-areas facility layout problem is concerned with finding the optimal arrangement of a given number of non-overlapping indivisible departments with unequal area requirements within a facility. We present a convex-optimisation-based framework for efficiently finding competitive solutions for this problem. The framework is based on the combination of two mathematical programming models. The first model is a convex relaxation of the layout problem that establishes the relative position of the departments within the facility, and the second model uses semidefinite optimisation to determine the final layout. Aspect ratio constraints, frequently used in facility layout methods to restrict the occurrence of overly long and narrow departments in the computed layouts, are taken into account by both models. We present computational results showing that the proposed framework consistently produces competitive, and often improved, layouts for well-known large instances when compared with other approaches in the literature.  相似文献   

6.
The single row facility layout problem (SRFLP) is the NP-hard problem of arranging facilities on a line, while minimizing a weighted sum of the distances between facility pairs. In this paper, a detailed polyhedral study of the SRFLP is performed, and several huge classes of valid and facet-inducing inequalities are derived. Some separation heuristics are presented, along with a primal heuristic based on multi-dimensional scaling. Finally, a branch-and-cut algorithm is described and some encouraging computational results are given.  相似文献   

7.
The single row facility layout problem (SRFLP) is the problem of arranging n departments with given lengths on a straight line so as to minimize the total weighted distance between all department pairs. We present a polyhedral study of the triplet formulation of the SRFLP introduced by Amaral [A.R.S. Amaral, A new lower bound for the single row facility layout problem, Discrete Applied Mathematics 157 (1) (2009) 183-190]. For any number of departments n, we prove that the dimension of the triplet polytope is n(n−1)(n−2)/3 (this is also true for the projections of this polytope presented by Amaral). We then prove that several valid inequalities presented by Amaral for this polytope are facet-defining. These results provide theoretical support for the fact that the linear program solved over these valid inequalities gives the optimal solution for all instances studied by Amaral.  相似文献   

8.
In this paper, a slicing tree based tabu search heuristic for the rectangular, continual plane facility layout problem (FLP) is presented. In addition to the incorporation of facilities with unequal areas we also integrate the possibility to specify various requirements regarding (rectangular) shape and dimensions of each individual facility by using bounding curves. Therefore, it is possible to solve problems containing facilities of fixed and facilities of flexible shapes at the same time. We present a procedure that calculates the layout corresponding to a given slicing tree on the basis of bounding curves. These layouts are slicing structures which are able to contain empty spaces to guarantee that stringent shape restrictions of facilities are kept. Due to these features this approach is better suited for practical use than so far existing ones. The effectiveness of our approach in terms of objective function value is shown by comparing our results to those found in the literature. Even a large problem instance comprised of 62 facilities has been solved.  相似文献   

9.
单元制造系统的布局对于提高系统的效率起着十分重要的作用。以最小化物料周转量和设施面积为目标,建立了一个单元制造系统布局的双目标优化模型,在该模型中不同制造单元的布局、单元内部不同设施的位置与方向这几个问题可以同时进行优化。基于模拟退火邻域解的变尺度生成机制和双目标抽样准则设计了模型的求解算法。算例表明本文算法所得Pareto解集优于经典的NSGA-Ⅱ算法。  相似文献   

10.
The unequal-areas facility layout problem is concerned with finding the optimal arrangement of a given number of non-overlapping indivisible departments with unequal area requirements within a facility. We present an improved optimization-based framework for efficiently finding competitive solutions for this problem. The framework is based on the combination of two mathematical optimization models. The first model is a nonlinear approximation of the problem that establishes the relative position of the departments within the facility, and the second model is an exact convex optimization formulation of the problem that determines the final layout. Aspect ratio constraints on the departments are taken into account by both models. Our computational results show that the proposed framework is computationally efficient and consistently produces competitive, and often improved, layouts for well-known instances from the literature as well as for new large-scale instances with up to 100 departments.  相似文献   

11.
This paper presents dynamic programming algorithms for generating optimal guillotine-cutting patterns of equal rectangles. The algorithms are applicable for solving the unconstrained problem where the blank demand is unconstrained, the constrained problem where the demand is exact, the unconstrained problem with blade length constraint, and the constrained problem with blade length constraint. The algorithms are able to generate the simplest optimal patterns to simplify the cutting process. When the sheet length is longer than the blade length of the guillotine shear used, the dynamic programming algorithm is applied to generate optimal layouts on segments of lengths no longer than the blade length, and the knapsack algorithm is employed to find the optimal layout of the segments on the sheet. The computational results indicate that the algorithms presented are more efficient than the branch-and-bound algorithms, which are the best algorithms so far that can guarantee the simplest patterns.  相似文献   

12.
1.IntroductionHuber'sM-estimatoronoverdeterminedproblemshasbeensurveyedbymanyau-thorssuchasClark[354],MadsenandNiels..l12'13lusingvariousschemes.Buttheunderdeterminedproblemshavenotattractedmuchattention,althoughtheyareoftenmetinengineeringproblems.Herewewanttousethemostpopularapproachesonthebasisofiterativeschemestosolvethiskindofproblems.Inthealgorithmascalingfactorcanbeestimatedeitheratthebeginningofthecomputationorbythealgorithmateachiteration.Weareconcernedwiththefollowingproblem:Probl…  相似文献   

13.
《Optimization》2012,61(5-6):517-527
The Weber problem for a given finite set of existing facilities in the plane is to find the location of a new facility such that the weithted sum of distances to the existing facilities is minimized.

A variation of this problem is obtained if the existing facilities are situated on two sides of a linear barrier. Such barriers like rivers, highways, borders or mountain ranges are frequently encountered in practice.

Structural results as well as algorithms for this non-convex optimization problem depending on the distance function and on the number and location of passages through the barrier are presented.  相似文献   

14.
常征  吕靖 《运筹与管理》2015,24(2):128-134
为解决设施面积不等的连续型设施布局问题,建立了基于弹性区带架构布置形式,以物料搬运成本最小、邻近关系最大、距离要求满足度最大的多目标设施布局模型。模型中考虑了区域内的横向、纵向过道,对设施的长宽比进行了限制,使得结果更符合实际情况。为克服传统多目标单一化方法需要人为设置子目标函数权重、主观性过强的缺陷,采用基于带有精英保留策略的非支配排序遗传算法(NSGA Ⅱ)的多目标优化算法求解模型,设计了相应的编码方式、交叉算子、变异算子、罚函数。最后通过某物流园区的实例分析证明了模型与方法的有效性。  相似文献   

15.
This paper deals with a location model for the placement of a semi-obnoxious facility in a continuous plane with the twin objectives of maximizing the distance to the nearest inhabitant and minimizing the sum of distances to all the users (or the distance to the farthest user) in a unified manner. For special cases, this formulation includes (1) elliptic maximin and rectangular minisum criteria problem, and (2) rectangular maximin and minimax criteria problem. Polynomial-time algorithms for finding the efficient set and the tradeoff curve are presented.  相似文献   

16.
The floorplanning (or facility layout) problem consists in finding the optimal positions for a given set of modules of fixed area (but perhaps varying height and width) within a facility such that the distances between pairs of modules that have a positive connection cost are minimized. This is a hard combinatorial optimization problem; even the restricted version where the shapes of the modules are fixed and the optimization is taken over a fixed finite set of possible module locations is NP-hard. In this paper, we extend the concept of target distance introduced by Etawil and Vannelli and apply it to derive the AR (Attractor-Repeller) model which is designed to improve upon the NLT method of van Camp et al. This new model is designed to find a good initial point for the Stage-3 NLT solver and has the advantage that it can be solved very efficiently using a suitable optimization algorithm. Because the AR model is not a convex optimization problem, we also derive a convex version of the model and explore the generalized target distances that arise in this derivation. Computational results demonstrating the potential of our approach are presented.  相似文献   

17.
Owing to its theoretical as well as practical significance, the facility layout problem with unequal-area departments has been studied for several decades, with a wide range of heuristic and a few exact solution procedures developed by numerous researchers. In one of the exact procedures, the facility layout problem is formulated as a mixed-integer programming (MIP) model in which binary (0/1) variables are used to prevent departments from overlapping with one another. Obtaining an optimal solution to the MIP model is difficult, and currently only problems with a limited number of departments can be solved to optimality. Motivated by this situation, we developed a heuristic procedure which uses a “graph pair” to determine and manipulate the relative location of the departments in the layout. The graph-pair representation technique essentially eliminates the binary variables in the MIP model, which allows the heuristic to solve a large number of linear programming models to construct and improve the layout in a comparatively short period of time. The search procedure to improve the layout is driven by a simulated annealing algorithm. The effectiveness of the proposed graph-pair heuristic is demonstrated by comparing the results with those reported in recent papers. Possible extensions to the graph-pair representation technique are discussed at the end of the paper.  相似文献   

18.
本研究了“撒网式”全面钻探过程中如何尽可能多地利用旧井而节约开支的问题,在两种距离和一定的误差意义下,运用图论、线性规划等方法建立了多个数学模型,并提出了相应的算法,对于所给的数值例子,利用计算机进行计算,得到了矿井最佳布局方案。  相似文献   

19.
The general facility location problem and its variants, including most location-allocation and P-median problems, are known to be NP-hard combinatorial optimization problems. Consequently, there is now a substantial body of literature on heuristic algorithms for a variety of location problems, among which can be found several versions of the well-known simulated annealing algorithm. This paper presents an optimization paradigm that, like simulated annealing, is based on a particle physics analogy but is markedly different from simulated annealing. Two heuristics based on this paradigm are presented and compared to simulated annealing for a capacitated facility location problem on Euclidean graphs. Experimental results based on randomly generated graphs suggest that one of the heuristics outperforms simulated annealing both in cost minimization as well as execution time. The particular version of location problem considered here, a location-allocation problem, involves determining locations and associated regions for a fixed number of facilities when the region sizes are given. Intended applications of this work include location problems with congestion costs as well as graph and network partitioning problems.  相似文献   

20.
The dynamic facility layout problem (DFLP) is the problem of finding positions of departments on the plant floor for multiple periods (material flows between departments change during the planning horizon) such that departments do not overlap, and the sum of the material handling and rearrangement costs is minimized. In this paper, the departments may have unequal-areas and free orientations, and the layout for each period is generated on the continuous plant floor. Because of the complexity of the problem, only small-size problems can be solved in reasonable time using exact techniques. As a result, a boundary search (construction) technique, which places departments along the boundaries of already placed departments, is developed for the DFLP. The solution is improved using a tabu search heuristic. The heuristics were tested on some instances from the DFLP and static facility layout problem (SFLP) literature. The results obtained demonstrate the effectiveness of the heuristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号