首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of low molecular weight compounds (LMWC) in complex matrices by vacuum matrix-assisted laser desorption/ionization (MALDI) often suffers from matrix interferences, which can severely degrade limits of quantitation. It is, therefore, useful to have available a range of suitable matrices, which exhibit complementary regions of interference. Two newly synthesized α-cyanocinnamic acid derivatives are reported here; (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) and (2E)-3-(anthracen-9-yl)-2-cyanoprop-2enoic acid (AnCCA). Along with the commonly used α-cyano-4-hydroxycinnamic acid (CHCA), and the recently developed 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrices, these constitute a chemically similar series of matrices covering a range of molecular weights, and with correspondingly differing ranges of spectral interference. Their performance was compared by measuring the signal-to-noise ratios (S/N) of 47 analytes, mostly pharmaceuticals, with the different matrices using the selected reaction monitoring (SRM) mode on a triple quadrupole instrument equipped with a vacuum MALDI source. AnCCA, NpCCA and Cl-CCA were found to offer better signal-to-noise ratios in SRM mode than CHCA, but Cl-CCA yielded the best results for 60% of the compounds tested. To better understand the relative performance of this matrix series, the proton affinities (PAs) were measured using the kinetic method. Their relative values were: AnCCA > CHCA > NpCCA > Cl-CCA. This ordering is consistent with the performance data. The synthesis of the new matrices is straightforward and they provide (1) tunability of matrix background interfering ions and (2) enhanced analyte response for certain classes of compounds.  相似文献   

2.
Cinnamic acid derivatives, particularly α‐cyano‐4‐hydroxycinnamic acid (E‐α‐cyano‐4‐hydroxycinnamic acid or (E)‐2‐cyano‐3‐(4‐hydroxyphenyl)prop‐2‐enoate; CHCA), have been extensively used especially for protein and peptide analysis. Together with the introduction of ionic liquid MALDI matrix (ILM) started the study of applications of IL prepared with CHCA and a counter organic base (ie, aliphatic amines) in which CHCA moiety is the chromophore responsible of UV‐laser absorption. Despite the extensive studies of norharmane (9H‐pyrido[3,4‐b]indole; nHo) applications as matrix and its peculiar basic properties in the ground and electronic excited state, nHo containing ILM was never tested in MALDI‐MS experiments. This pyrido‐indole compound was introduced as MALDI matrix 22 years ago for different applications including low molecular weight (LMW) carbohydrates (neutral, acidic, and basic carbohydrates). These facts encouraged us to use it as a base, for the first time, for ILM preparation. As a rational design of new IL MALDI matrices, E‐α‐cyanocinnamic acid.nHo and E‐cinnamic acid.nHo were prepared and their properties as matrices studied. Their performance was compared with that of (a) the corresponding IL prepared with butylamine as basic component, (b) the corresponding crystalline E‐α‐cyanocinnamic and E‐cinnamic acid, and (c) the classical crystalline matrices (2,5‐dihydroxybenzoic acid, DHB; nHo) used in the analysis of neutral/sulfated carbohydrates. The IL DHB.nHo was tested, too. Herein, we demonstrate the outstanding performance for the IL CHCA.nHo for LMW carbohydrate in positive and negative ion mode (linear and reflectron modes). Sulfated oligosaccharides were detected in negative ion mode, and although the dissociation of sulfate groups was not completely suppressed the relative intensity (RI) of [M ? Na]? peak was quite high. Additionally, to better understand the quite different performance of each IL tested as matrix, the physical and morphological properties in solid state were studied (optical image; MS image).  相似文献   

3.
Application of matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) to small-molecule detection is often limited, because of high matrix background signals in the low-mass region. We report here an approach in which a mixture of two conventional MALDI matrices with different proton affinity was used to suppress the formation of matrix clusters and fragments. Specifically, when acidic α-cyano-4-hydroxycinnamic acid (CHCA) and basic 9-aminoacridine (9-AA) were used as the binary matrix, fewer background matrix peaks were observed in both positive and negative-mode detection of small molecules. In addition, the presence of CHCA substantially reduced the laser fluence needed for analyte desorption and ionization; thus better signal-to-background ratios were observed for negatively charged inositol phosphates in complex plant extracts. The mixing of MALDI matrices of different protonaffinities leads to suppression of matrix clusterformation and subsequently yields cleaner MS spectraof fewer background peaks in both positive andnegative detection of small molecules  相似文献   

4.
Matrix-enhanced surface-assisted laser desorption ionization mass spectrometry imaging (ME-SALDI MSI) has been previously demonstrated as a viable approach to improving MS imaging sensitivity. We describe here the employment of ionic matrices to replace conventional MALDI matrices as the coating layer with the aims of reducing analyte redistribution during sample preparation and improving matrix vacuum stability during imaging. In this study, CHCA/ANI (α-cyano-4-hydroxycinnamic acid/aniline) was deposited atop tissue samples through sublimation to eliminate redistribution of analytes of interest on the tissue surface. The resulting film was visually homogeneous under an optical microscope. Excellent vacuum stability of the ionic matrix was quantitatively compared with the conventional matrix. The subsequently improved ionization efficiency of the analytes over traditional MALDI was demonstrated. The benefits of using the ionic matrix in MS imaging were apparent in the analysis of garlic tissue sections in the ME-SALDI MSI mode.  相似文献   

5.
In a previous study on matrix‐assisted laser desorption ionization (MALDI) of peptides using α‐cyano‐4‐hydroxycinnamic acid (CHCA) as a matrix, we found that the patterns of single‐shot spectra obtained under different experimental conditions became similar upon temperature selection. In this paper, we report that absolute ion abundances are also similar in temperature‐selected MALDI spectra, even when laser fluence is varied. The result that has been obtained using CHCA and 2,5‐dihydroxybenzoic acid as matrices is in disagreement with the hypothesis of laser‐induced ionization of matrix as the mechanism for primary ion formation in MALDI. We also report that the total number of ions in such a spectrum is unaffected by the identity, concentration and number of analytes, i.e. it is the same as that in the spectrum of pure matrix. We propose that the generation of gas‐phase ions in MALDI can be explained in terms of two thermal reactions, i.e. the autoprotolysis of matrix molecules and the matrix‐to‐analyte proton transfer, both of which are in quasi‐equilibrium in the early matrix plume. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Peptide samples derived from enzymatic in‐gel digestion of proteins resolved by gel electrophoresis often contain high amount of salts originating from reaction and separation buffers. Different methods are used for desalting prior to matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS), e.g. reversed‐phase pipette tip purification, on‐target washing, adding co‐matrices, etc. As a suitable matrix for MALDI MS of peptides, α‐cyano‐4‐hydroxycinnamic acid (CHCA) is frequently used. Crystalline CHCA shows the ability to bind peptides on its surface and because it is almost insoluble in acidic water solutions, the on‐target washing of peptide samples can significantly improve MALDI MS signals. Although the common on‐target washing represents a simple, cheap and fast procedure, only a small portion of the available peptide solution is efficiently used for the subsequent MS analysis. The present approach is a combination of the on‐target washing principle carried out in a narrow‐end pipette tip (e.g. GELoader tip) and preconcentration of peptides from acidified solution by passing it through small CHCA crystals captured inside the tip on a glass microfiber frit. The results of MALDI MS analysis using CHCA‐tip peptide preconcentration are comparable with the use of homemade POROS R2 pipette tip microcolumns. Advantages and limitations of this approach are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The performance of a matrix‐assisted laser desorption/ionization (MALDI) ionic liquid matrix (ILM) consisting of α‐cyano‐4‐hydroxycinnamic acid (CHCA) and aniline (ANI) was evaluated to assess whether it could offer possible advantages over conventional matrices. Ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and laser desorption/ionization mass spectrometry (LDI‐MS) experiments were carried out with the aim of confirming the structure of the ANI‐CHCA ILM. Different model analytes such as amino acids, peptides, proteins, lipids, phospholipids, synthetic polymers, and sugars were tested. Mass spectra with similar or improved signal‐to‐noise (S/N) ratio (compared to CHCA) were invariably obtained demonstrating the potential of this ILM as a general purpose matrix. Furthermore, protein identification by peptide mass fingerprinting (PMF) and database search was facilitated compared to CHCA since higher scores and increased sequence coverage were observed. Finally, a complex lipid mixture (i.e. a raw extract of a milk sample) analysed by MALDI‐MS showed improved S/N ratio, a reduced chemical noise and a limited formation of matrix‐clusters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
By using a new sample preparation method for matrix-assisted laser desorption ionization, a significant shift to lower mass-to-charge values can be obtained for many protein samples. The sample preparation technique involves the creation of a thin film of protein-doped -cyano-4-hydroxycinnamic acid (CHCA) matrix formed in the presence of glycerol on top of a previously deposited pad of CHCA matrix. The higher charge states were not observed if the laser power was significantly above the threshold needed to produce protein molecular ions. Similar spectra were observed when samples were prepared in the presence of urea. The phenomenon was specific for the CHCA matrix because no effects were observed when sinapinic acid (3,5-dimethoxy-4-hydroxy-trans-cinnamic acid) and 2-(4-hydroxyphenylazo) benzoic acid matrices were used with the new sample preparation method.  相似文献   

9.
Degree of ionization (DI) in matrix-assisted laser desorption ionization (MALDI) was measured for five peptides using α-cyano-4-hydroxycinnanmic acid (CHCA) as the matrix. DIs were low 10(-4) for peptides and 10(-7) for CHCA. Total number of ions (i.e., peptide plus matrix) was the same regardless of peptides and their concentration, setting the number of gas-phase ions generated from a pure matrix as the upper limit to that of peptide ions. Positively charged cluster ions were too weak to support the ion formation via such ions. The total number of gas-phase ions generated by MALDI, and that from pure CHCA, was unaffected by the laser pulse energy, invalidating laser-induced ionization of matrix molecules as the mechanism for the primary ion formation. Instead, the excitation of matrix by laser is simply a way of supplying thermal energy to the sample. Accepting strong Coulomb attraction felt by cations in a solid sample, we propose three hypotheses for gas-phase peptide ion formation. In Hypothesis 1, they originate from the dielectrically screened peptide ions in the sample. In Hypothesis 2, the preformed peptide ions are released as part of neutral ion pairs, which generate gas-phase peptide ions via reaction with matrix-derived cations. In Hypothesis 3, neutral peptides released by ablation get protonated via reaction with matrix-derived cations.  相似文献   

10.
Silver ion complexes of peptides [M + (Ag)n]+, M = angiotensin I or substance P where n = 1–8 and 17–23 for angiotensin I and n = 1–5 for substance P, are identified and characterized using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS). The Ag+ coordination number exceeds the number of available amino acid residues in angiotensin I whereas the number of observed complexes in substance P is less than the number of amino acid residues in it. The larger coordination number of angiotensin I with Ag+ indicates the simultaneous binding of several Ag+ ions to the amino acid residue present in it. The lower number of observed complexes in substance P suggests the binding of two or more residues to one Ag+ ion. The presence of trifluoroacetic acid in the peptide samples reduces the Ag+ coordination ability in both the peptides which indicates that the basic residues in it are already protonated and do not participate in the Ag+‐binding process. The Ag+ ion also forms a complex with the α‐cyano‐4‐hydroxycinnamic acid (CHCA) matrix and is observed in the MALDI mass spectra and the formation of [CHCA + Ag]+, [CHCA + AgNO3]+ and [(CHCA)2 + Ag]+ ions is due to the high binding affinity of Ag+ to the CN group of CHCA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrophobic compounds with hydroxyl, aldehyde or ketone groups are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because these compounds have low proton affinity and are poorly ionized by MALDI. Herein, coumarins have been used as new matrices for MALDI-MS analysis of a variety of hydrophobic compounds with low ionization efficiency, including steroids, coenzyme Q10, a cyclic lipopeptide and cholesterol oleate. Five coumarins, including coumarin, umbelliferone, esculetin, 7-hydroxycoumarin-3-carboxylic acid (HCA) and 6,7-dihydroxycoumarin-3-carboxylic acid (DCA), were compared with the conventional matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Coumarins with hydroxyl or carboxylic acid groups enabled detection. Taking DCA as an example, this matrix proved to be superior to DHB or CHCA in detection sensitivity, stability, spot-to-spot and sample-to-sample reproducibility, and accuracy. DCA increased the stability of the target compounds and decreased the loss of water. The [M + Na]+ peaks were observed for all target compounds by adding NaCl as an additive, and the [M − H2O + H]+ and [M + H]+ peaks decreased. DCA was selected for the identification of sterols in yeast cells, and thirteen sterols were detected by Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. This work demonstrates the potential of DCA as a new matrix for detection of hydrophobic molecules by MALDI-MS and provides an alternative tool for screening sterols in antifungal research.  相似文献   

12.
Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.
Figure
?  相似文献   

13.
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) techniques are continually being assessed with a view to improving the quality of information obtained from a given sample. A single tissue section will typically only be analyzed once by MALDI MSI and is then either used for histological staining or discarded. In this study, we explore the idea of repeat analysis of a single tissue section by MALDI MSI as a route toward improving sensitivity, structural characterization, and diversity of detected analyte classes. Repeat analysis of a single tissue section from a fresh frozen mouse brain is investigated with both α-cyano-4-hydroxycinnamic acid (CHCA) and para-nitroaniline (PNA). Repeat analysis is then applied to the acquisition of MALDI MSI and MALDI tandem mass spectrometry imaging employing collision induced dissociation (MS/MS imaging employing CID) from a formalin-fixed mouse brain section. Finally, both lipid and protein data are acquired from the same tissue section via repeat analysis utilizing CHCA, sinapinic acid (SA), and a tissue wash step. PNA was found to outperform CHCA as a matrix for repeat analysis; multiple lipids were identified using MS/MS imaging; both lipid and protein images were successfully acquired from a single tissue section.
Figure
Repeat analysis by MALDI MS imaging of a single tissue section is investigated with multiple matrices and tissue washes to provide increased molecular information from a single tissue section  相似文献   

14.
In our continuing studies to isolate water-soluble vacuolar pigments, we expect to elucidate more structural details using mass spectrometry (MS). Because of its sensitivity, only a small amount of pigment extracted from natural plants is required for MS measurement. Nuclear magnetic resonance is also a useful spectroscopic method for structural determination. In this study, two soft ionization techniques, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), on time-of-flight (TOF) mass spectrometers, were used to analyze five polyacylated anthocyanins with more than two aromatic acid molecules in the side chains. ESI is advantageous for the detection of individual molecular ions, while MALDI is essential for the detection of characteristic fragment ions originating from the anthocyanidin. Although 2,5-dihydroxybenzoic acid (DHBA) is an effective matrix in MALDI-TOFMS to obtain informative fragment ions of polyacylated anthocyanins, α-cyano-4-hydroxycinnamic acid (CHCA) is the preferred matrix for the identification of aglycones. In particular, in measurements of polyacylated anthocyanins with two acylated glycoside chains, fragment ions originating from anthocyanidin can only be observed in MALDI-TOFMS using CHCA as the matrix.  相似文献   

15.
3‐Aminoquinoline/α‐cyano‐4‐hydroxycinnamic acid (3AQ/CHCA) is a liquid matrix (LM), which was reported by Kumar et al. in 1996 for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. It is a viscous liquid and has some advantages of durability of ion generation by a self‐healing surface and quantitative performance. In this study, we found a novel aspect of 3AQ/CHCA as a MALDI matrix, which converges hydrophilic material into the center of the droplet of analyte‐3AQ/CHCA mixture on a MALDI sample target well during the process of evaporation of water derived from analyte solvent. This feature made it possible to separate not only the buffer components, but also the peptides and oligosaccharides from one another within 3AQ/CHCA. The MALDI imaging analyses of the analyte‐3AQ/CHCA droplet indicated that the oligosaccharides and the peptides were distributed in the center and in the whole area around the center of 3AQ/CHCA, respectively. This 'on‐target separation' effect was also applicable to glycoprotein digests such as ribonuclease B. These features of 3AQ/CHCA liquid matrix eliminate the requirement for pretreatment, and reduce sample handling losses thus resulting in the improvement of throughput and sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M+n+n′ matrix+H]+ or [M+n+n′ matrix+Na]+ (n = the number of cysteine residues, n′=1, 2,…, n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, α-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and α-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated. In general, this method is fast, effective, and robust to identify disulfide bonds in proteins/peptides.  相似文献   

17.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied to the analysis of Ru(OCOCF(3))(2)(CO)(PPh(3))(2), Ru(OCOC(3)F(7))(2)(CO)(PPh(3))(2), Ir(tBuppy)(3) and Ir(ppy)(2)(acac) complexes. A troublesome problem in the MALDI-TOFMS characterization of these metal complexes is the possible replacement of complex ligands by matrix. In this contribution, 10 matrices, ranging from acidic to basic, were investigated: alpha-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), dithranol, 2,4,6-trihydroxyactophenone (THAP), 6-azo-2-thiothymine (ATT), norharman, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), 4-nitroaniline (NA) and 2-amino-5-nitrophyridine (ANP). With most of the matrices, including the neutral and basic ones, matrix substitution of ligand could clearly be detected. Based on the experimental results, possible mechanisms of matrix substitution were discussed. It was demonstrated that the ligand exchange process might also occur through the gas-phase reactions initiated by laser shots. Among the matrices tested, DCTB was found to be the best one for the complexes that are prone to ligand exchange by matrix.  相似文献   

18.
Sample pretreatment is key to obtaining good data in matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix‐enhanced surface‐assisted laser desorption/ionization (ME‐SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α‐cyano‐4‐hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME‐SALDI‐MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME‐Zr‐SALDI‐MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI‐MSI.  相似文献   

19.
Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix‐assisted laser desorption/ionization (IR‐MALDI). Especially in the 6–7 µm‐band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O–H, CO, and CH3. Additionally, atmospheric pressure (AP) IR‐MALDI, which is applicable to liquid‐state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP‐IR‐MALDI mass spectrometry of a peptide, angiotensin II, using a mid‐IR tunable laser with a tunable wavelength range of 5.50–10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H]+ of the peptide are measured using a conventional solid matrix, α‐cyano‐4‐hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3‐aminoquinoline. Other than the O–H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP‐IR‐MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H]+ is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O–H bending vibration mode. Moreover, long‐lasting and stable ion signals are obtained from the aqueous solution. AP‐IR‐MALDI using a 6–7 µm‐band IR tunable laser and solvents as the matrix may provide a novel on‐line interface between liquid chromatography and mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In-source decay (ISD) and post-source decay (PSD) of a peptide ion ([Y6 + H]+) and a preformed ion (benzyltriphenylphosphonium, BTPP) generated by matrix-assisted laser desorption ionization (MALDI) were investigated with time-of-flight mass spectrometry. α-Cyano-4-hydroxycinammic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) were used as matrices. For both ions, ISD yield was unaffected by delay time, indicating rapid termination of ISD. This was taken as evidence for rapid expansion cooling of hot “early” plume formed in MALDI. CHCA was hotter than DHB for [Y6 + H]+ while the matrix effect was insignificant for BTPP. The “early” plume temperature estimated utilizing previous kinetic results was 800–900 K, versus 400–500 K for “late” plume. The results support our previous finding that the temperature of peptide ions interrogated by tandem mass spectrometry was lower than most rough estimates of MALDI temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号