首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Herbal medicines (HMs) are regarded as one of the traditional medicines in health care to prevent and treat some diseases. Some herbal components such as turmeric and ginger are used as HMs, therefore the identification and confirmation of herbal use are very necessary. In addition, the adulteration practice, mainly motivated to gain economical profits, may occur by substituting the high price of HMs with lower-priced ones or by addition of certain chemical constituents known as Bahan Kimia Obat (chemical drug ingredients) in Indonesia. Some analytical methods based on spectroscopic and chromatographic methods are developed for the authenticity and confirmation of the HMs used. Some approaches are explored during HMs authentication including single-component analysis, fingerprinting profiles, and metabolomics studies. The absence of reference standards for certain chemical markers has led to exploring the fingerprinting approach as a tool for the authentication of HMs. During fingerprinting-based spectroscopic and chromatographic methods, the data obtained were big, therefore the use of chemometrics is a must. This review highlights the application of fingerprinting profiles using variables of spectral and chromatogram data for authentication in HMs. Indeed, some chemometrics techniques, mainly pattern recognition either unsupervised or supervised, were applied for this purpose.  相似文献   

2.
Summary The applicability of a new chiral reagent to the resolution of amino acid enantiomers has been investigated. The new reagent, S(-)-N-1-(2-naphthylsulphonyl)-2-pyrrolidinecarbonyl chloride (NSP-C1), was synthesized by the chlorination of S(-)-N-1-(2-naphthylsulphonyl)-2-pyrrolidinecarboxylic acid which was prepared by the reaction of 2-naphthalene sulphonyl chloride with L-proline. Derivatization of the amino acids proceeds rapidly at ambient temperature and no racemization takes place during the reaction. The resolution of the diastereomeric amides was performed by TLC and normal phase HPLC. Complete resolutions were observed for the enantiomers of all amino acids examined except cysteine, cystine and histidine. The favourable UV absorption of the derivatives enabled the optical antipode to be determined down to the 0.1% level.  相似文献   

3.
Reversed phase‐high performance liquid chromatography (RP‐HPLC), thin layer chromatography (TLC) densitometry and first derivative spectrophotometry (1D) techniques are developed and validated as a stability‐indicating assay of ezetimibe in the presence of alkaline induced degradation products. RP‐HPLC method involves an isocratic elution on a Phenomenex Luna 5μ C18 column using acetonitrile: water: glacial acetic acid (50:50:0.1 v/v/v) as a mobile phase at a flow rate of 1.5 mL/min. and a UV detector at 235 nm. TLC densitometric method is based on the difference in Rf‐values between the intact drug and its degradation products on aluminum‐packed silica gel 60 F254 TLC plates as stationary phase with isopropanol: ammonia 33% (9:1 v/v) as a developing mobile phase. On the fluorescent plates, the spots were located by fluorescence quenching and the densitometric analysis was carried out at 250 nm. Derivative spectrophotometry, the zero‐crossing method, ezetimibe was determined using first derivative at 261 nm in the presence of its degradation products. Calibration graphs of the three suggested methods are linear in the concentration ranges 1–10 mcg/mL, 0.1–1 mg/mL and 1–16 mcg/mL with a mean percentage accuracy of 99.05 ± 0.54%, 99.46 ± 0.63% and 99.24 ± 0.82% of bulk powder, respectively. The three proposed methods were successfully applied for the determination of ezetimibe in raw material and pharmaceutical dosage form; the results were statistically analyzed and compared with those obtained by the reported method. Validation parameters were determined for linearity, accuracy and precision; selectivity and robustness and were assessed by applying the standard addition technique.  相似文献   

4.
Summary Some HPLC procedures with isocratic or gradient elution are reported for the identification and determination of most of the characteristic components of cortical extracts. The proposed solvent systems were: A) for normal phase chromatography, mixtures of chloroform-methanol-water on silica columns. B) For reversed phase chromatography, mixtures of methanol-water or acetonitrile-water or tetrahydrofuran-water on octadecyl silica columns of different brands. With these systems it was possible to identify and determine, in addition to the principal corticosteroids, some minor components of the cortical extracts as the 20β-dihydroderivatives of compounds F, E, A, B, the 17-ketosteroids adrenosterone, 11β-hydroxyandrostendione and androstendione and finally, progesterone and 17-OH progesterone. In reversed phase chromatography it was also possible, by monitoring the effluent at 205 nm, to reveal the 5α- and 5β-tetrahydroderivatives of the main corticosteroids and to separate them from most of the steroidal components of the adrenal extracts; in these conditions it was also possible to reveal some characteristic, unknown components of the cortical extracts. Some results of quantitative analysis of cortical extracts are also reported, comparing different analytical procedures. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

5.
A novel analytical procedure for the determination of Pb(II) and Cd(II) in herbal medicines by differential pulse anodic stripping voltammetry (DPASV) on Nafion‐coated bismuth film electrode (NCBFE) was proposed and experimentally validated. Various experimental parameters, which influenced the response of the NCBFE to these metals in real samples, were optimized. The results showed that there were well‐defined peaks of Pb and Cd in herb samples at deposition potential of ?1.2 V and deposition time of 300 s. The analytical performance of the NCBFE was evaluated in the presence of dissolved oxygen, with the determination limits of 0.35 µg·L?1 for Pb and 0.72 µg·L?1 for Cd and recoveries of 87.8% –105.4% for Pb and 89.5% –108.5% for Cd obtained from different samples. The Pb and Cd concentrations in the studied samples have been also determined by graphite furnace atomic absorption spectrometry (GFAAS), suggesting that there was a satisfactory agreement between the two techniques, with relative errors lower than 6.5% in all cases. The great advantages of the proposed method over the spectroscopic method were characterized by its simplicity, selectivity and short analysis time, simultaneous analysis of different metals and cost‐efficiency.  相似文献   

6.
7.
The oxidation of lomefloxacin (LOM) and balofloxacin (BAL) under the influence of azo initiator of radical reactions of 4,4′-azobis(4-cyanopentanoic acid) (ACVA) and H2O2 was examined. Oxidation using H2O2 was performed at room temperature while using ACVA at temperatures: 40, 50, 60 °C. Additionally, the oxidation process of BAL under the influence of KMnO4 in an acidic medium was investigated. New stability-indicating HPLC methods were developed in order to evaluate the oxidation process. Chromatographic analysis was carried out using the Kinetex 5u XB—C18 100A column, Phenomenex (Torrance, CA, USA) (250 × 4.6 mm, 5 μm particle size, core shell type). The chromatographic separation was achieved while using isocratic elution and a mobile phase with the composition of 0.05 M phosphate buffer (pH = 3.20 adjusted with o-phosphoric acid) and acetonitrile (87:13 v/v for LOM; 80:20 v/v for BAL). The column was maintained at 30 °C. The methods were validated according to the ICH guidelines, and it was found that they met the acceptance criteria. An oxidation process followed kinetics of the second order reaction. The most probable structures of LOM and BAL degradation products formed were assigned by the UHPLC/MS/MS method.  相似文献   

8.
A platform for the pharmacokinetic study of multiple constituent traditional Chinese medicine was developed and validated. An HPLC/ESI/MS method was employed for the simultaneous determination of panax notoginsenoside R1, ginsenoside Rg1, Rd, Re and Rb1 in rat plasma. After the addition of digoxin as an internal standard (IS), rat plasmas were extracted with n-butanol saturated with pure water and all analytes were separated on a reversed-phased C(18) column with a mobile phase of acetonitrile-water (0.5 mM ammonium chloride) and pumped at a flow rate of 0.2 mL/min. Analytes were determined in a single quadrupole mass spectrometer using an electrospray ionization source. HPLC/ESI/MS was performed in the selected-ion monitoring mode with the chlorinated adducts of molecular ions [M + Cl]( -) at m/z 967.75, 835.80, 981.80, 981.80, 1143.65 and 815.40 for R1, Rg1, Rd, Re, Rb1 and digoxin, respectively. The method showed excellent linearity over the concentration range 3.03-775.00 ng/mL (r(2) = 0.9994) for R1, 4.00-1025.00 ng/mL (r(2) = 0.9991, 0.9988, 0.9991) for Rg1, Rd and Re, respectively, and 2.77-710.00 ng/mL for Rb1 (r(2) = 0.9990). The low limit of quantification was 3.03, 4.00, 4.00, 4.00 and 2.77 ng/mL for R1, Rg1, Rd, Re and Rb1, respectively, with S/N > 10. The intra- and inter-day precisions were below 12.00% and the accuracy was between -2.31 and +4.43% for all analytes. The extract recoveries of analytes were from 67.47 to 94.18%. All analytes were stable in rat plasma after storage for 12 h at ambient temperature, at 4 degrees C for 12 h in the sample pool, at -20 degrees C for 4 weeks and at -20 degrees C for three thaw-freeze cycles. The HPLC/ESI/MS technique provided an excellent method for the simultaneous quantification of R1, Rg1, Rd, Re and Rb1 in rat plasma and was successfully applied to the pharmacokinetic study of a multiple-constituent traditional Chinese medicine, total panax notoginsenoside (Xuesaitong injection).  相似文献   

9.
Summary Relationships betweenR F values and mobile-phase composition have been determined for moderately polar pesticides in normal-phase systems (NP) of the type silica-non-polar diluent (heptane)-polar modifier (ethyl acetate, tetrahydrofuran, or dioxane) and in reversed-phase systems (RP) of the type octadecyl silica-water-polar modifier (acetonitrile, methanol, or tetrahydrofuran). These relationships constitute a retention database which has enabled choice of the optimum conditions for preparative column chromatographic separation of pesticides into fractions; these were then applied to a silica plate and chromatographed. The plate was videoscanned, furnishing a real picture of the plate showing complete separation of the pesticide fractions.  相似文献   

10.
The characterization and authentication of fats and oils is a subject of great importance for market and health aspects. Identification and quantification of triacylglycerols in fats and oils can be excellent tools for detecting changes in their composition due to the mixtures of these products. Most of the triacylglycerol species present in either fats or oils could be analyzed and identified by chromatographic methods. However, the natural variability of these samples and the possible presence of adulterants require the application of chemometric pattern recognition methods to facilitate the interpretation of the obtained data. In view of the growing interest in this topic, this paper reviews the literature of the application of exploratory and unsupervised/supervised chemometric methods on chromatographic data, using triacylglycerol composition for the characterization and authentication of several foodstuffs such as olive oil, vegetable oils, animal fats, fish oils, milk and dairy products, cocoa and coffee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号