首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
程雪涛  张勤昭  徐向华  新刚 《中国物理 B》2013,22(2):20503-020503
The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed.On the other hand,when the heat flux of the heating surface is fixed,the minimum thermal resistance corresponds to the minimum average temperature of the heating surface.The entropy optimization is also given for the heat transfer processes.It is observed that the minimum entropy generation,the minimum entropy generation number,and the minimum revised entropy generation number do not always correspond to the best heat transfer performance.In addition,the influence factors on the optimized aspect ratio of the plate fin are also discussed.The optimized ratio decreases with the enhancement of heat convection,while it increases with fin thermal conductivity increasing.  相似文献   

2.
《Revue Generale de Thermique》1996,35(416):517-525
This paper presents a novel method which can be helpful in assessing the optimal configuration of finned-tube heat exchangers. The method is an extension of the local irreversibilities method [17], and it is based on the determination on a local basis of the two components of the entropy generation rate: the one caused by viscous dissipations and the one due to thermal irreversibilities. Depending on the engineering purpose for which a technical device was designed, it can be argued that the optimal configuration will be that in which either one (or both) of these two entropy generation rates is minimized. For a heat exchanging device, it is important to minimize thermal irreversibilities, but more important is to minimize the mechanical power lost in achieving a prescribed heat-exchange performance: to this purpose, one can form a relative irreversibility index (named Bejan number here and in [17] because the original seed of this procedure can be found in [1]), and use it to assess the merit of a given configuration.In the procedure presented here, a circular, single-tube, finned heat exchanger configuration is considered: the velocity and temperature fields are computed (via a standard finite-element package, FIDAP) for a realistic value of the Reynolds number and for a variety of geometric configurations (various fin external diameters and fin spacing); then, the entropy generation rate is calculated from the flowfield, and is examined both at a local level, to detect possible bad design spots (ie, locations which correspond to abnormally high entropy generation rates, which could be cured by design improvements), and at an overall (integral) level, to assess the entropic performance of the heat exchanger. Optimal curves are given, and the optimal spacing of fins is determined using alternatively the entropy generation rate and the total heat transfer rate as objective functions: different optima arise, and the differences as well as the similarities are discussed in detail.  相似文献   

3.
This study focuses on energy and entropy analysis to theoretically investigate the performance of a pilot scale dual heated humidification-dehumidification (HDH) desalination system. Two cases of HDH systems are considered in the analysis. The first case is a dual heated (DH) cycle consisting of 1.59 kW air heater and 1.42 kW water heater with a heat rate ratio of 0.89 (CAOW-DH-I). Whereas the second case is a dual heated HDH cycle comprising of 1.59 kW air heater and 2.82 kW water heater with a heat rate ratio of 1.77 (CAOW-DH-II). As a first step, mathematical code was developed based on heat and mass transfer and entropy generation within the major components of the system. The code was validated against the experimental data obtained from a pilot scale HDH system and was found to be in a good agreement with the experimental results. Theoretical results revealed that there is an optimal mass flowrate ratio at which GOR is maximized, and entropy generation is minimized. Furthermore, the degree of irreversibility within the humidifier component is low and approaches zero, while the specific entropy generation within other components are relatively high and are of the same order of magnitude. Entropy analysis also showed that the dual heated system with heat rate ratio greater than unity is better than the one with heat rate ratio less than unity.  相似文献   

4.
The heat transfer and entropy generation in a tube filled with double-layer porous media are analytically investigated. The wall of the tube is subjected to a constant heat flux. The Darcy-Brinkman model is utilized to describe the fluid flow, and the local thermal non-equilibrium model is employed to establish the energy equations. The solutions of the temperature and velocity distributions are analytically derived and validated in limiting case. The analytical solutions of the local and total entropy generation, as well as the Nusselt number, are further derived to analyze the performance of heat transfer and irreversibility of the tube. The influences of the Darcy number, the Biot number, the dimensionless interfacial radius, and the thermal conductivity ratio, on flow and heat transfer are discussed. The results indicate, for the first time, that the Nusselt number for the tube filled with double-layer porous media can be larger than that for the tube filled with single layer porous medium, while the total entropy generation rate for the tube filled with double-layer porous media can be less than that for the tube filled with single layer porous medium. And the dimensionless interfacial radius corresponding to the maximum value of the Nusselt number is different from that corresponding to the minimum value of the total entropy generation rate.  相似文献   

5.
The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors’ knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence.  相似文献   

6.
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc.  相似文献   

7.
导热优化中的最小传递势容耗散与最小熵产   总被引:5,自引:1,他引:4  
为了比较分析强化传热中存在的熵产最小化和传递势容耗散最小化两种不同的方法,针对体点问题,根据这两种方法对导热系数分布进行了优化。数值计算和理论分析的结果表明,根据最小传递势容耗散原理得到的结果优于最小熵产原理得到的结果。其原因在于传递势容耗散最小的优化目标是提高热量传递效率,而熵产最小的优化目标实际上是减少可用能损失。  相似文献   

8.
Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always.  相似文献   

9.
In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS–LES approach (zonal LES), a hybrid RANS–LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively. The results obtained are evaluated in comparison with direct numerical simulation (DNS) data and wall-resolved LES including thermal cases of large Reynolds numbers where DNS data are not available in the literature. It turns out that zonal LES, IDDES and WFLES are able to predict heat and fluid flow statistics along with wall shear stresses and Nusselt numbers accurately and that are physically consistent. Furthermore, it is found that IDDES, WFLES and zonal LES exhibit significantly lower computational costs than wall-resolved LES. Since IDDES and especially zonal LES require considerable extra work to generate numerical grids, this study indicates in particular that WFLES offers a promising near-wall modeling strategy for LES of conjugated heat transfer problems. Finally, an entropy generation analysis using the various models showed that the viscous entropy production is zero inside the solid region, peaks at the solid–fluid interface and decreases rapidly with increasing wall distance within the fluid region. Except inside the solid region, where steep temperature gradients lead to high (thermal) entropy generation rates, a similar behavior is monitored for the entropy generation by heat transfer process.  相似文献   

10.
对流换热过程的热力学优化与传热优化   总被引:1,自引:0,他引:1  
为了进一步明确对流换热过程中热力学优化与传热优化之间的差异,本文分别利用熵产最小原理、(火积)耗散极值原理针对两种边界条件下的对流换热问题进行分析,讨论熵产,(火积)耗散与有用能损失以及对流换热能力之间的关系.结果表明:熵产最小意味着系统的有用能损失最小,但并不反映系统的对流换热能力的强弱;而(火积)耗散取极值意味着系统的对流换热能力最强,但与系统的有用能损失不存在对应关系.因此,对于将降低有用能损失作为优化目标的换热问题应采用熵产最小原理进行分析;而对于需要将提高换热能力作为优化目标的对流换热问题应采用(火积)耗散极值原理进行分析.  相似文献   

11.
The effects of a heat sink and the source size and location on the entropy generation, MHD natural convection flow and heat transfer in an inclined porous enclosure filled with a Cu-water nanofluid are investigated numerically. A uniform heat source is located in a part of the bottom wall, and a part of the upper wall of the enclosure is maintained at a cooled temperature, while the remaining parts of these two walls are thermally insulated. Both the left and right walls of the enclosure are considered to be adiabatic. The thermal conductivity and the dynamic viscosity of the nanofluid are represented by different verified experimental correlations that are suitable for each type of nanoparticle. The finite difference methodology is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published works is performed, and the results show a very good agreement. The results indicate that the Nusselt number decreases via increasing the nanofluid volume fraction as well as the Hartmann number. The best location and size of the heat sink and the heat source considering the thermal performance criteria and magnetic effects are found to be D?=?0.7 and B?=?0.2. The entropy generation, thermal performance criteria and the natural heat transfer of the nanofluid for different sizes and locations of the heat sink and source and for various volume fractions of nanoparticles are also investigated and discussed.  相似文献   

12.
An experimental investigation on the heat transfer effectiveness of solid and slit ribs mounted on the bottom surface of a rectangular channel has been carried out at Reynolds numbers of 13400, 22600, 32100 and 40800. The rib height to hydraulic diameter ratio (e/D h)set during experiment is equal to 0.0624. The surface Nusselt number results from transient liquid crystal thermography are presented. The heat transfer enhancement performance analysis has been carried out using entropy generation principle. The slit rib is superior to solid rib from both heat transfer augmentation and pressure penalty point of view. The performance of the slit rib is a function of the open area ratio (β) and the location of the slit (b) from the bottom test surface. The optimum open area ratio is 20% and the slit located symmetrically from the top and bottom surface of the rib is the optimum location of the slit. The heat transfer augmentation of the slit rib (β=20%) is 61% in comparison to 40% for the solid rib at Re=32100 and the pressure penalty for the slit rib is 7% lower than the solid rib. The entropy generation for the slit rib is 33% less than that of the solid rib.  相似文献   

13.
The lattice Boltzmann simulation of nanofluid flow and heat transfer during natural convection within a dumbbell-shaped heat exchanger is carried out. The heat exchanger is filled with CuO–water. The KKL model is employed to predict the thermo-physical properties of nanofluid. In order to perform a comprehensive hydrothermal investigation, different post-processing approaches such as heatline visualization, total entropy generation, local entropy generation based on local fluid friction irreversibility and heat transfer irreversibility, average and local Nusselt variation are employed. In the present investigation, it is tried to present the impact of different influential parameters like Rayleigh number, solid volume fraction of nanofluid and thermal arrangement of internal fins-bodies on the fluid flow, heat transfer rate and entropy generation.  相似文献   

14.
The work is devoted to the numerical investigation of unsteady regimes of the paraffin convective melting inside a closed rectangular region heated from the energy source with a constant density of the volumetric heat generation. The problem has been formulated in dimensionless transformed variables “stream function?vorticity?temperature” and solved by using a finite difference method. The main characteristics of the melting process and heat transfer in a liquid medium have been obtained and analyzed at different powers of the energy source (from 5 to 100 Watt). The influence of heat transfer from the source on the temperature distributions inside the region containing paraffin has been analyzed.  相似文献   

15.
The purpose of this study is to analyze the dynamic properties of gas hydrate development from a large hydrate simulator through numerical simulation. A mathematical model of heat transfer and entropy production of methane hydrate dissociation by depressurization has been established, and the change behaviors of various heat flows and entropy generations have been evaluated. Simulation results show that most of the heat supplied from outside is assimilated by methane hydrate. The energy loss caused by the fluid production is insignificant in comparison to the heat assimilation of the hydrate reservoir. The entropy generation of gas hydrate can be considered as the entropy flow from the ambient environment to the hydrate particles, and it is favorable from the perspective of efficient hydrate exploitation. On the contrary, the undesirable entropy generations of water, gas and quartz sand are induced by the irreversible heat conduction and thermal convection under notable temperature gradient in the deposit. Although lower production pressure will lead to larger entropy production of the whole system, the irreversible energy loss is always extremely limited when compared with the amount of thermal energy utilized by methane hydrate. The production pressure should be set as low as possible for the purpose of enhancing exploitation efficiency, as the entropy production rate is not sensitive to the energy recovery rate under depressurization.  相似文献   

16.
In the present work, the entropy generation due to the heat transfer and fluid friction irreversibility is investigated numerically for a three-dimensional flow induced by rotating and stretching motion of a cylinder. The isothermal boundary conditions are taken into account for the heat transfer analysis. The similarity transformations are utilized to convert the governing partial differential equations to ordinary differential equations. Resulting nonlinear differential equations are solved using a numerical scheme. Expressions for the entropy generation number, the Nusselt number and the Bejan number are obtained and discussed through graphs for various physical parameters. An analysis has been made to compare the heat transfer irreversibility with fluid friction irreversibility using the expression of the Bejan number. It is found that the surface is a durable source of irreversibility and the curvature of cylinder is to enhance the fluid friction irreversibility.  相似文献   

17.
The numerical simulation method of radiative entropy generation in participating media presented by Caldas and Semiao [Entropy generation through radiative transfer in participating media: analysis and numerical computation. JQSRT 2005;96:423-37] is extended to analyze the radiative entropy generation in the enclosures filled with semitransparent media. A discrete ordinates method is used to solve radiative transfer equation and radiative entropy generation. Two different examples are employed to verify the numerical simulation method of radiative entropy generation in the enclosure. Numerical results of dimensionless radiative entropy generation of enclosure are identical to that of entire thermodynamics analysis for the enclosure system. This numerical simulation method can be used in the entropy generation analysis of high-temperature systems such as boilers and furnaces, in which radiation is the dominant mode of heat transfer.  相似文献   

18.
In studies on the combustion process, thermodynamic analysis can be used to evaluate the irreversibility of the combustion process and improve energy utilization efficiency. In this paper, the combustion process of a laminar oxy-fuel diffusion flame was simulated, and the entropy generation due to the irreversibilities of the radiation process, the heat conduction and heat convection process, the mass diffusion process, and the chemical reaction process was calculated. The effect of the oxygen concentration in the oxidizer on the entropy generation was analyzed. The results indicated that, as the oxygen concentration in the oxidizer increases, the radiative entropy generation first increases and then decreases, and the convective and conductive entropy generation, the mass diffusion entropy generation, the chemical entropy generation, and the total entropy generation gradually increase.  相似文献   

19.
以R600a压力式封闭系统喷雾冷却过程为研究对象,对其换热过程进行分析。对液滴撞击热面后的状态进行建模,分析了其运动状态。通过忽略液膜的对流换热,引入韦伯数来简化并修正雾滴与热源表面的对流换热系数关联式;借鉴二次成核理论,通过单位时间内,单位面积上覆盖的雾滴数量对核态沸腾换热系数关联式修正。通过上述分析,以对流换热和核态沸腾换热两种机理为中心,建立了新的换热系数关联式。通过与其他文献的关联式、实验测量值进行比较、不同工质进行比较、不同实验系统比较,发现该式预测值和实验测量值偏差在±20%以内,能够很好地预测压力式封闭系统喷雾冷却过程的换热系数。  相似文献   

20.
大后掠钝舵高超声速干扰特性实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
文章采用热流率测量和纹影拍摄技术, 对高超声速层流湍流边界层条件下钝舵干扰流场进行了实验研究.实验在高超声速炮风洞内完成, 来流Mach数为6, 8.研究结果表明层流与湍流干扰流场之间存在较大差别, 层流状态下干扰流场存在分离, 平板干扰区内热流率存在负增量, 舵面上存在明显的热流率峰值; 湍流状态下干扰流场无分离, 干扰对平板干扰区内热流率影响较小, 舵面上无明显峰值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号