首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Domestic wastewaters are produced in huge volumes and abundant with carbon, nitrogen and phosphorous, which are a promising source of nutrients for production of microalgae. Microalgae-based bioremediation of domestic wastewater offers various advantages over traditional treatment approaches because the process consumes CO2, completely removes nitrogen and phosphorous for production of green biomass and oxygen. Moreover, the abundance of biochemical compositions (e.g., lipids, proteins, carbohydrates, bioactive compounds) of microalgae biomass is superior to terrestrial plant biomass in refining to multi-products having variety of commercial values. In this review, the most dominant microalgae used for simultaneous removal of pollutants and production of biomass and metabolites from domestic wastewater are presented. Biorefinery of microalgae biomass produced from domestic wastewater for production of multiple products is also explored. Finally, challenges and perspectives of successful microalgae-based bioremediation of domestic wastewater toward the biorefinery are briefly discussed.  相似文献   

2.
Microalgae consortia were photoautotrophically cultivated in sequencing batch photobioreactors (SBPRs) with an alteration of the normal growth and starvation (nutrient limitation) phases to select consortia capable of polyhydroxyalkanoate (PHA) accumulation. At the steady state of SBPR operation, the obtained microalgae consortia, selected under nitrogen and phosphate limitation, accumulated up to 11.38% and 10.24% of PHA in their biomass, which was identified as poly(3-hydroxybutyrate) (P3HB). Photoautotrophic and mixotrophic batch cultivation of the selected microalgae consortia was conducted to investigate the potential of biomass and PHA production. Sugar source supplementation enhanced the biomass and PHA production, with the highest PHA contents of 10.94 and 6.2%, and cumulative PHA productions of 100 and 130 mg/L, with this being achieved with sugarcane juice under nitrogen and phosphate limitation, respectively. The analysis of other macromolecules during batch cultivation indicated a high content of carbohydrates and lipids under nitrogen limitation, while higher protein contents were detected under phosphate limitation. These results recommended the selected microalgae consortia as potential tools for PHA and bioresource production. The mixed-culture non-sterile cultivation system developed in this study provides valuable information for large-scale microalgal PHA production process development following the biorefinery concept.  相似文献   

3.
生物炼制是人类面对日益枯竭的化石资源和其所产生的严重环境污染的必然选择。本文从生物炼制和石油炼制的比较出发简要介绍了生物炼制的概念、基本分类和理论框架,并重点分析了生物炼制过程工程的相关技术和进展,主要包括生物质原料的预处理、过程相关的酶水解技术以及发酵菌种改良等。本文还概括了生物炼制相关的碳水化合物、脂肪类以及其他类产品的相关产品群,分析了一些重要生物基产品的生产过程、研发趋势以及所面临的机遇和挑战。  相似文献   

4.
微藻生物能源具有巨大的开发潜力及应用前景,但仍面临很多产业化瓶颈.本文分析了微藻生物能源技术的潜力与存在的问题,指出制约微藻生物能源技术发展的主要障碍为规模养殖,如何提高微藻生长效率、降低能耗、提高规模生产的可靠性仍是面临的艰巨任务.本文介绍了石油化工企业温室气体减排与微藻生物能源技术的集成及技术思路,构建了减排工业废气与生产微藻生物能源的循环经济模式.此外,还介绍了中国石化在利用温室气体发展微藻生物能源技术方面的实践,围绕能源微藻选育技术、光生物反应器技术、微藻生物质加工及综合利用技术展开阐述.  相似文献   

5.
生物炼制是人类面对日益枯竭的化石资源和其所产生的严重环境污染的必然选择.本文从生物炼制和石油炼制的比较出发简要介绍了生物炼制的概念、基本分类和理论框架,并重点分析了生物炼制过程工程的相关技术和进展,主要包括生物质原料的预处理、过程相关的酶水解技术以及发酵菌种改良等.本文还概括了生物炼制相关的碳水化合物、脂肪类以及其他类产品的相关产品群,分析了一些重要生物基产品的生产过程、研发趋势以及所面临的机遇和挑战.  相似文献   

6.
Catalytic transformation of renewable plant oils including microalgae and waste oil into industrially relevant α-olefins in the C3 to C10 regime is demonstrated. The biorefinery concept is comprised of a catalytic sequence of ethenolysis, double bond isomerization, and a subsequent ethenolysis, thereby cutting and rearranging the fatty acid chains into valuable chemical building blocks. A benign extraction and reaction solvent, supercritical carbon dioxide (scCO2), is utilized.  相似文献   

7.
Lipid bodies are dynamic organelles of photosynthetic microalgae that can be used as the third generation resources for biofuel production.Biosynthesis of lipids can be influenced by different signalling processes.Visualisation of these processes can provide useful information about the fate and associated roles of lipid molecules in different biological systems.In photosynthetic organisms,however,studies of calcium ediated lipid biosynthesis is bottlenecked due to the limitation of proper and efficient technologies,which also include visualisation techniques.Currently,most studies to visualise lipid droplets in vivo have used traditional dyes,and proper visualisation of lipid drops is hindered by dye-specific limitations.This hurdle could be overcome by using recently developed aggregation-induced emission biooprobes.This review reveals current knowledge gaps in the studies of lipid drops and calcium ions in microalgae,as calcium signaling is important secondary messenger to detect a wide variety of environmental stimuli in plant and animal cells.To obtain insight into the mechanisms of these processes,the merits and demerits of currently available visualisation techniques for lipid drops and calcium are also detailed.Finally,opportunities and possibilities are proposed to recommend further improvement of techniques for detecting the role of calcium during lipid formation in microalgae for biofuel production.  相似文献   

8.
生物炼制是以可再生生物质资源为原料,生产能源与化工产品的新兴工业模式。是转变经济增长模式,保障社会经济可持续发展的重大战略需求。微生物细胞工厂是生物炼制技术至关重要的核心。世界各国纷纷设立重大研究计划支持细胞工厂的研究,以期获得生物炼制技术的领先地位。本文简要概括了细胞工厂和生物炼制这一新兴工业模式,回顾了生物炼制细胞工厂的重大计划和进展,讨论了目前亟待解决的关键问题和研究对策。  相似文献   

9.
细胞工厂与生物炼制   总被引:1,自引:0,他引:1  
张延平  李寅  马延和 《化学进展》2007,19(7):1076-1083
生物炼制是以可再生生物质资源为原料,生产能源与化工产品的新兴工业模式.是转变经济增长模式,保障社会经济可持续发展的重大战略需求.微生物细胞工厂是生物炼制技术至关重要的核心.世界各国纷纷设立重大研究计划支持细胞工厂的研究,以期获得生物炼制技术的领先地位.本文简要概括了细胞工厂和生物炼制这一新兴工业模式,回顾了生物炼制细胞工厂的重大计划和进展,讨论了目前亟待解决的关键问题和研究对策.  相似文献   

10.
Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.  相似文献   

11.
The key to expanding the energy supply, increasing energy security, and reducing the dependency on foreign oil is to develop advanced technologies to efficiently transform our renewable bioresources into domestically produced bioenergy and bioproducts. Conventional biorefineries, i.e., forest products industry’s pulp and paper mills with long history of sustainable utilization of lignocellulose (wood), offer a suitable platform for being expanded into future integrated forest biorefineries. Due to the pre-existing infrastructure in current forest products operations, this could present a very cost-effective approach to future biorefineries. In order to better understand the overall process, technical, economic, and environmental impacts, a detailed process modeling of the whole integrated forest biorefinery is presented here. This approach uses a combination of Aspen Plus®, WinGEMS®, and Microsoft Excel® to simulate the entire biorefinery in detail with sophisticated communication interface between the three simulations. Preliminary results for a simple case study of an integrated biorefinery show the feasibility of this approach. Further investigations, including additional details, more process options, and complete integration, are currently underway.  相似文献   

12.
Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.  相似文献   

13.
A planar, transparent, and adaptable nanosieve device is developed for efficient microalgae/bacteria separation. In the proposed method, a sacrificial layer is applied with dual photolithography patterning to achieve a 1D channel with a very low aspect ratio (1:10 000). A microalgae/bacteria mixture is then introduced into the deformable PDMS nanochannel. The hydrodynamic deformation of the nanochannel is regulated to allow the bacteria cells to pass through while leaving the microalgae cells trapped in the device. At a flow rate of 4 μL/min, the supernatant collected from the device is indistinguishable from a control solution, indicating that nearly all the microalgae cells are trapped in the device. Additionally, this device is capable of single cell auto-fluorescence tracking. These microalgae cells demonstrate minimal photobleaching over 250 s laser exposure and could be used to monitor hazardous compounds in the sample with a continuous flow. This method will be valuable to purify microalgae samples containing contaminations and study single-cell heterogeneity.  相似文献   

14.
Highly efficient solution-processable emitters are greatly desired to develop low-cost organic light-emitting diodes (OLEDs). The recently developed thermally activated delayed fluorescence (TADF) materials are promising candidates, but blue TADF materials compatible with the all-solution-process have still not been achieved. Here, a series of TADF materials, named X-4CzCN, are developed by introducing the bulky units through an unconjugated linker, which realizes high molecular weight to enhance the solvent resistance ability without disturbing the blue TADF feature. Meanwhile, the peripheral wrapping groups efficiently inhibit the triplet–triplet and triplet–polaron quenching by isolating the energy-transfer and charge-transporting channels. The photophysical measurements indicate that a small variation in peripheral unit will have a noticeable effect on the luminescence efficiency. The enlarged volume of peripheral units will make the electroluminescent spectra blueshift, while enhancing the energy transfer of exciplex and blocking the energy leakage of electromer can facilitate the exciton utilization. As a result, the fully solution-processed blue OLED achieves a CIE of (0.16, 0.27), a low turn on voltage of 2.9 eV, and a high external quantum efficiency of 20.6 %. As far as we known, this is the first report of all-solution-processed TADF OLEDs with blue emission, which exhibits a high efficiency even comparable to the vacuum-deposited devices.  相似文献   

15.
本文首先介绍了国外以玉米、废弃生物质为原料发展生物炼油厂的设想;然后根据我国国情和已有技术基础,设想了以甜高梁、木薯为原料生产乙醇车用汽油和化工产品的生物炼油厂,以及以菜籽油、棉籽油为原料生产生物柴油和化工产品的生物炼油厂;最后探讨了遇到的问题和采取的对策。  相似文献   

16.
Bioraffinerien     
The development of biorefineries plays an important role for the solution of future global challenges such as the supply for an increasing world population, the finite nature of fossil resources or environmental and climate protection. Biorefineries guarantee high efficiency and sustainability in material and energetic use of biomass by integrating different processes. However, in order for biorefineries to become commercially feasible, significant further research is required. This concerns the integration of different measures for coherent technological concepts, the upscaling from a laboratory scale to an industrial scale, raw material supply, the optimization of methods and products of the primary‐ and secondary refinery including the principles of sustainability. The German Roadmap Biorefineries determines systematically the current status of the various biorefinery concepts, analyses them regarding economical and ecological aspects and contains concrete recommendations for research and development. The Roadmap gives a comprehensive overview of a range of technologies and the ways how they can be realized. The Roadmap's aim is to develop and to operate biorefinery concepts until 2030 that are highly efficient, in line with the future requirements and ecologically advan‐tageous.  相似文献   

17.
Microalgae have emerged as one of the most promising sources of renewable biomass. However, considerable challenges must be addressed in order to improve the commercial outlook for the production of commodity chemicals. The largest challenge remains the energy intensive and consequently costly process of microalgae harvesting and drying. Ionic liquids have found a niche application in this area by allowing the extraction of lipids from wet biomass at low temperatures in less time than traditional lipid extraction methods. A number of recent studies have advanced the study of wet extraction of microalgae using ionic liquids and elucidated some of the limitations of this process. However, the most promising avenue for ionic liquid-based wet extraction lies in the fractionation and recovery of multiple biomass products such as lipids, carbohydrates, and carotenoids, in a single process.  相似文献   

18.
微藻生物固碳技术进展和发展趋势   总被引:1,自引:0,他引:1  
大气中CO2含量升高是导致温室效应的主要原因,因此,减少CO2的排放和积累是解决全球气候变暖的重点.传统的CO2减排方法包括捕集(capture)和储存(storage),涉及化学吸附、物理吸收、膜分离和低温蒸馏等一系列物理化学方法,但其均存在成本高和不可再生等缺点.通过种植或养殖生物质可以捕集CO2.微藻生长周期短、光合效率高,其CO2固定效率为一般陆生植物的10~50倍;同时微藻生长速度快,能利用不可耕地,具有广阔的发展前景.本文概述了适用的藻种及所能达到的CO2固定效果,分析了光生物反应器类型、光照强度、光周期、温度、pH、CO2浓度、CO2吸收效率、气体传质效率和营养需求(包括来自市政和工业农废水中的N、P等营养)等多种因素对微藻固碳效果的影响.最后,对微藻固碳的实际应用和经济可行性进行了评估,展望了微藻固碳技术的发展和应用前景.  相似文献   

19.
Growth of microalgal biomass is driven by nutrient availability but also by species competition for these nutrients. In this study, a modeling procedure has been developed by means of which impacts of nutrient competition on microalgae cells can be investigated on a cell‐level. The goal of this modeling is to enhance the understanding of nutrient competition in a given biological environment and to enable predicting the biomass' species composition. These models are compared with experimental data and empirical assessments published earlier in this journal. Because these simulations have been built on very generic assumptions, transferring this chemometric methodology to other cell types is straightforward. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The composition of the ship's ballast water is complex and contains a large number of microalgae cells, bacteria, microplastics, and other microparticles. To increase the accuracy and efficiency of detection of the microalgae cells in ballast water, a new microfluidic chip for continuous separation of microalgae cells based on alternating current dielectrophoresis was proposed. In this microfluidic chip, one piece of 3‐dimensional electrode is embedded on one side and eight discrete electrodes are arranged on the other side of the microchannel. An insulated triangular structure between electrodes is designed for increasing the inhomogeneity of the electric field distribution and enhancing the dielectrophoresis (DEP) force. A sheath flow is designed to focus the microparticles near the electrode, so as to increase the suffered DEP force and improve separation efficiency. To demonstrate the performance of the microfluidic separation chip, we developed two species of microalgae cells (Platymonas and Closterium) and a kind of microplastics to be used as test samples. Analyses of the related parameters and separation experiments by our designed microfluidic chip were then conducted. The results show that the presented method can separate the microalgae cells from the mixture efficiently, and this is the first time to separate two or more species of microalgae cells in a microfluidic chip by using negative and positive DEP force simultaneously, and moreover it has some advantages including simple operation, high efficiency, low cost, and small size and has great potential in on‐site pretreatment of ballast water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号