首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large amount of hemp polysaccharides remain in industrial hemp residues (IHR) after cannabidiol extraction, resulting in the waste of resources. Therefore, the systematic study of hemp polysaccharides is beneficial to the development of IHR in the future. In this study, the extraction of industrial hemp residues polysaccharide (IHRPs) was optimized by single-factor experiment and orthogonal experimental design. The optimum heating extraction conditions were extraction temperature 98 °C, solid–liquid ratio 1:10, extraction time 1 h, number of successive extractions 2, and pH at 4. The extraction ratio and the polysaccharide content were 20.12 ± 0.55% and 12.35 ± 0.26% at the conditions, respectively. Besides, the best alcohol precipitation conditions were pumping with 2 L/h, stirring continuously, and ice-water bath for 4 h. The crude IHRPs was further purified by column chromatography and the polysaccharide/protein contents of purified IHRPs were 34.44% and 1.61%. IHRPs was mainly made up of ten monosaccharides and some non-sugar components including organic acids, flavonoids, steroids, and glycoside. The FT-IR demonstrated the polysaccharide skeleton of IHRPs. Moreover, the DPPH and ABTS scavenging rate of IHRPs were 76.00% and 99.05% at the concentrations of 1 mg/mL. IHRPs could promote the epidermal cells proliferation and healing of cell scratches. Meanwhile, IHRPs could promoted the expression of anti-aging-related genes. Overall, IHRPs could be a desirable natural source of antioxidants and anti-aging products in many aspects.  相似文献   

2.
Hemp and hemp seed press cake—a by-product of hemp oil production—are high-protein, gluten-free raw materials that are often used to enhance the nutritional value of breads. The addition of hemp materials, however, often negatively impacts the technological parameters of breads. Consequently, this study investigated whether and how much the addition of various by-products of hemp seed press cakes to wheat bread mixtures adversely affects the texture and colour profile. The texture profile and colour were determined using a texture analyser and tristimulus measurements. The particle size of raw materials was also measured. Principal component analysis was then used to visualise the correlation between all measured values as well as nutritional parameters. The results showed that the addition of only 1% of some hemp raw materials caused significant technological changes (p > 0.05). Hemp raw materials increased bread hardness and decreased elasticity. The colour of breads containing 1% hemp was also visibly darker than the reference bread. The addition of more hemp led to further darkening and the deterioration of the technological parameters of the products. Consequently, while various hemp materials have high nutritional value, a balance with sensory properties, e.g., textural and colour, has to be reached.  相似文献   

3.
Hemp seed by-products, namely hemp cake (hemp meal) and hemp hulls were studied for their lipid content and composition. Total lipid content of hemp cake and hemp hulls was 13.1% and 17.5%, respectively. Oil extraction yields using hexane, on the other hand, were much lower in hemp cake (7.4%) and hemp hulls (12.1%). Oil derived from both hemp seeds and by-products were primarily composed of neutral lipids (>97.1%), mainly triacylglycerols (TAGs), determined by SPE and confirmed by NMR study. Linoleic acid was the major fatty acid present in oils derived from hemp by-products, covering almost 55%, followed by α-linolenic acid, covering around 18% of the total fatty acids. For the first time, 47 intact TAGs were identified in the hemp oils using UPLC-HRMS. Among them, TAGs with fatty acid acyl chain 18:3/18:2/18:2 and 18:3/18:2/18:1 were the major ones, followed by TAGs with fatty acid acyl chain of 18:3/18:3/18:2, 18:2/18:2/16:0, 18:2/18:2/18:1, 18:3/18:2.18:0, 18:2/18:2/18:0, 18:2/18:1/18:1 and 18:3/18:2:16:0. Besides TAGs, low levels of terpenes, carotenoids and cannabidiolic acid were also detected in the oils. Moreover, the oils extracted from hemp by-products possessed a dose-dependent DPPH radical scavenging property and their potencies were in a similar range compared to other vegetable oils.  相似文献   

4.
Olive oil application in the cosmetic industry may be extended by its ozonation, bringing about new oil properties and increased stability. Olive oil treated with 0.04 mole O3 or 0.10 mole O3 per 100 g oil was subjected to chemical parameters evaluation and composition scrutinizing by gas chromatography–mass spectrometry (GC-MS) and headspace solid-phase microextraction (HS-SPME) GC-MS analysis. The biological activity of refined and ozonated oil included their antimicrobial properties by the agar diffusion method and cytotoxicity by the MTT assay towards two normal (LLC-PK1, HaCaT) and two cancerous (Caco-2, HeLa) cell lines. The oils served as the basis in cosmetic emulsions. The chosen organoleptic features, preservative efficacy in a challenge test, and persistency during six months of these formulations were assessed. However, the ozonation of the olive oil resulted in a decrease in unsaturated acids; several additional compounds were detected in the ozonated oil, which positively affect the physicochemical, sensory, and functional properties of cosmetic emulsions. Emulsions based on the ozonated olive oil retain their properties longer compared to emulsions based on the refined olive oil. Ozonated oil treated with 0.10 mole O3/100 g oil allowed increasing the shelf life of the non-preserved formulation up to six months. A weak inhibitory effect against Candida albicans and Aspergillus brasiliensis was also demonstrated for this emulsion in the challenge test. Moreover, an interesting aroma, slightly enhanced antimicrobial activity against Escherichia coli, Staphylococcus aureus, C. albicans, A. brasiliensis, and a lack of cytotoxicity at concentrations 625 µg mL−1 make the ozonated olive oil a promising raw material for the cosmetics and pharmaceutical industries.  相似文献   

5.
The hemp seed contains protein fractions that could serve as useful ingredients for food product development. However, utilization of hemp seed protein fractions in the food industry can only be successful if there is sufficient information on their levels and functional properties. Therefore, this work provides a comparative evaluation of the structural and functional properties of hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein fractions were isolated at pH values of least solubility. Results showed that the dominant protein was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI.  相似文献   

6.
The purpose of this paper was to characterize and investigate the antimicrobial potential of Amorpha fruticosa fruits essential oil (EO). The EO was extracted by hydrodistillation, analyzed by GC-MS, and then evaluated for its interaction with microbial and mammalian cells. The antimicrobial activity was assessed against bacterial and fungal strains, in a planktonic and adherent growth state, using qualitative and quantitative assays. The main components identified in A. fruticosa fruits EO were δ-cadinene, γ-muurolene, and α-muurolene. The Gram-positive strains proved to be more susceptible than Gram-negative bacteria and fungal strains. The EO exhibited good antibiofilm activity, inhibiting the microbial adherence to the inert (96-well plates and Foley catheter section) and cellular substrata. The flow cytometry analysis revealed as one of the possible mechanisms of antimicrobial action the alteration of cell membrane hydrophobicity. The cytotoxicity on the L929 cell line occurred at concentrations higher than 0.3 mg/mL. Taken together, our results demonstrate that A. fruticosa fruits EO contains active compounds with selective inhibitory effect on different microbial strains in planktonic and biofilm growth state, explained at least partially by the interference with microbial membranes due to their hydrophobic character.  相似文献   

7.
Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that are commercially available. Lichens belonging to usnic acid-containing genera have been used as crude drugs throughout the world. There are indications of usnic acid being a potentially interesting candidate for such activities as anti-inflammatory, analgesic, healing, antioxidant, antimicrobial, antiprotozoal, antiviral, larvicidal and UV protection. However, some studies reported the liver toxicity and contact allergy. Thus, further studies are needed to establish the efficacy and safety of usnic acid  相似文献   

8.
Four novel tryptophan based metal (II) complexes of the type [ML (Try)2] were prepared by using pyrazolone derived Schiff base ligand. The proposed structure was confirmed by physicochemical methods which reveal octahedral coordination environment around the metal center. Intercalative binding mode of the complexes with CT DNA was confirmed by electronic absorption titration, viscosity measurements and fluorescence spectroscopy. Efficiency of DNA cleavage ability of the metal complexes was explored by the gel electrophoresis technique. The antimicrobial activities of the metal complexes showed potent biocidal activity. The percentage of free radical scavenging activity shows that the complexes are very reactive towards DPPH. Moreover, their cytotoxicity was tested against the two cancer cell lines (MCF‐7 and HepG2) and one normal cell line (NHDF) respectively. The MTT assay shows that the complexes have the anticancer efficacy. Moreover, the complexes exhibit a limited cytotoxicity effect on normal cell line NHDF. The morphological changes of apoptosis cell death were investigated by using Hoechst 33258 staining method. In addition, the Molecular docking studies was executed to consider the nature of binding and binding affinity of the synthesized compounds with DNA (PDB: 1BNA) and protein (PDB: 3hb5).  相似文献   

9.
Hemp (Cannabis sativa L.) contains a variety of secondary metabolites, including cannabinoids, such as psychoactive (−)-trans-Δ⁹-tetrahydrocannabinol. The present study was conducted to identify the major phenolic components contained in hemp root, which has been relatively under-researched compared to other parts of hemp. The aqueous ethanol extract of hemp roots was fractionated into methylene chloride (MC), ethyl acetate (EA), and water (WT) fractions, and high-performance liquid chromatography with photodiode array detection (HPLC-DAD) analysis was performed. The main ultraviolet (UV)-absorbing phenolic compound contained in the EA fraction was identified as p-coumaric acid by comparing the retention time and UV absorption spectrum with a standard. Silica gel column chromatography was performed to isolate a hydrophobic derivative of p-coumaric acid contained in the MC fraction. Nuclear magnetic resonance (NMR) analysis identified the isolated compound as ethyl p-coumarate. For comparative purposes, ethyl p-coumarate was also chemically synthesized by the esterification reaction of p-coumaric acid. The content of p-coumaric acid and ethyl p-coumarate in the total extract of hemp root was estimated to be 2.61 mg g−1 and 6.47 mg g−1, respectively, by HPLC-DAD analysis. These values correspond to 84 mg Kg−1 dry root and 216 mg Kg1 dry root, respectively. In conclusion, this study identified p-coumaric acid and ethyl p-coumarate as the main phenolic compounds contained in the hemp roots.  相似文献   

10.
Abstract

A series of C-centered heteroscorpionate-based homoleptic manganese(II), nickel(II), and copper(II) complexes of type [M(L1–3)2] (19) have been synthesized by using the ligands (2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL1), (4-diethylamino-2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL2) and (5-bromo-2-hydroxyphenyl)bis(imidazol-1-yl)methane (HL3). The geometric parameters of the complexes were determined using UV-vis and theoretical studies suggesting distorted octahedral geometry around metal(II) ion. Frontier molecular orbital analysis supports bioefficacy of the complexes. Antimicrobial activity of the metal(II) complexes were determined against two Gram(–ve) (Escherichia coli and Klebsiella pneumoniae) and two Gram(+ve) (Bacillus cereus and Staphylococcus aureus) bacteria, and three fungal (Candida albicans, Candida glabrata, and Candida krusei) strains. Antioxidant activity of nickel(II) and copper(II) complexes were evaluated against ABTS, DPPH, and H2O2 free radicals. In vitro cytotoxicity activity of nickel(II) and copper(II) complexes against human breast adenocarcinoma (MCF-7), cervical (HeLa), and lung (A549) cancer cell lines along with one normal human dermal fibroblasts (NHDF) cell line were carried out by MTT assay, which shows the potent activity of copper(II) complex 8 with respect to the standard drug cisplatin. Molecular docking studies evidence the interaction of complexes with cyclin-dependent kinase 2 receptor (CDK2).  相似文献   

11.
Essential oils (EOs) are known and used for their biological, antibacterial, antifungal and antioxidant properties. Numerous studies have shown that EOs exhibit a large spectrum of biological activities in vitro. The incidence of drug-resistant pathogens and the toxicity of antibiotics have drawn attention to the antimicrobial activity of natural products, encouraging the development of alternative treatments. The aim of this study was to analyse the phytochemical and the cytotoxic characteristic of 36 EOs; we then evaluated the antimicrobial activity of the less-toxic EOs on Gram-positive, Gram-negative and fungi strains. The results showed low cytotoxicity in seven EOs and good activity against Gram-negative and Candida spp. strains. Based on our results, EOs could be proposed as a novel group of therapeutic agents. Further experiments are necessary to confirm their pharmacological effectiveness, and to determine potential toxic effects and the mechanism of their activity in in vivo models.  相似文献   

12.
The reaction between aqueous solution of Me3SnCl and acetonitrile solution of quinaldic acid (quinH) at room temperature affords a new organotin complex, [Me3Sn(quinH)(quin)]?6H2O ( 1 ). Complex 1 was structurally characterized using infrared, UV–visible and NMR spectra, thermogravimetric analysis and single‐crystal X‐ray analysis. The network structure of 1 is developed by a limitless number of discrete mononuclear molecules forming a one‐dimensional chain via hydrogen bonds. Extensive hydrogen bonds and π–π stacking associate the one‐dimensional chains creating a two‐dimensional array. The two‐dimensional arrays are additionally associated via hydrogen bonds through the water molecules and the methyl groups forming a three‐dimensional network. The cytotoxic impact of 1 on the viability of MCF‐7 cells was also examined using MTT assay, exhibiting great inhibiting action against MCF‐7 cells. Furthermore, the catalytic degradation performance of 1 towards methylene blue dye in the presence of H2O2 as oxidant was investigated. The reaction is first order with respect to methylene blue dye.  相似文献   

13.
The novel synthetic approach was employed to synthesize a series of 1,8-dihydropyrazolo[3,4-b]azepine derivatives from 5-aminopyrazoles in three-step synthesis. The structures of the individual derivatives were unambiguously confirmed by spectral methods, including heteronuclear 1H−13C HMBC spectra and other necessary 2D NMR experiments. The obtained pyrazoloazepines and starting aminopyrazoles were subsequently investigated for their potential cytotoxic effect using mouse and human leukemia cell models. The original L1210 (mouse lymphoblastic), MOLM-13, and SKM-1 (both human myeloblastic) cell lines and their P-glycoprotein (P-gp) expressing cell variants were used. Aminopyrazole 8 was the most effective on murine leukemic lymphoblasts (L1210), while it had a greater effect on P-gp expressing cells. In contrast, on human leukemic myeloblasts (MOLM-13, SKM-1), Aminopyrazoles 10 showed the most pronounced effect, but this was independent of the presence of P-gp in the cells.  相似文献   

14.
Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is limited due to low water solubility and possible instability. The aim of this study was to evaluate the possibility to incorporate OrO in an aqueous dispersion of chitosan—alginate nanoparticles and how this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-NP) have small size (320 nm) and negative charge (−25 mV). The data from FTIR spectroscopy and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens (ISO 20776-1:2006) are 4–32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10) shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system of oregano oil possesses strong antimicrobial activity and is promising for development of food additives.  相似文献   

15.
The aim of this study was to investigate the antimicrobial property of the compounds present in the lichen Usnea albopunctata. Ethyl acetate extract of the lichen was purified by column chromatography to yield a major compound which was characterised by spectroscopic methods as protocetraric acid. In this study, protocetraric acid recorded significant broad spectrum antimicrobial property against medically important human pathogenic microbes. The prominent antibacterial activity was recorded against Salmonella typhi (0.5 μg/mL). Significant antifungal activity was recorded against Trichophyton rubrum (1 μg/mL), which is significantly better that the standard antifungal agent. Protocetraric acid is reported here for the first time from U. albopunctata. Thus the results of this study suggest that protocetraric acid has significant antimicrobial activities and has a strong potential to be developed as an antimicrobial drug against pathogenic microbes.  相似文献   

16.
An original gas chromatographic method has been developed for simultaneous determination of major terpenes and cannabinoids in plant samples and their extracts. The main issues to be addressed were the large differences in polarity and volatility between both groups of analytes, but also the need for an exhaustive decarboxylation of cannabinoid acidic forms. Sample preparation was minimised, also by avoiding any analyte derivatisation. Acetone was found to be the most appropriate extraction solvent. Successful chromatographic separation was achieved by using a medium polarity column. Limits of detection ranged from 120 to 260 ng/mL for terpenes and from 660 to 860 ng/mL for cannabinoids. Parallel testing proved the results for cannabinoids are comparable to those obtained from established HPLC methods. Despite very large differences in concentrations between both analyte groups, a linear range between 1 and 100 µg/mL for terpenes and between 10 and 1500 µg/mL for cannabinoids was determined.  相似文献   

17.
Turmeric spent, a by-product of turmeric processing industries, was used as a source to prepare nanofibers (NF). The chemical treatments methods followed by acid hydrolysis accompanied with high pressure homogenization were used to prepare NF. The resulting turmeric nanofibers (TNF) were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA/DTA). The TNF presented needle like structure, high thermal stability, an average width of 38.5?nm, average length of 245.7?nm, and giving an aspect ratio (L/D) of 23.15. The prepared TNF showed pronounced antimicrobial activity against Bacillus cereus, Escherichia Coli, Salmonella typhimurium and Staphylococcus aureus and also registered good antioxidant activity. The results showed that TNF were successfully obtained from turmeric spent and might be potentially applied in different fields, such as pharmaceutical, biological active species, nutraceuticals, components for food industries and bionanocomposites.  相似文献   

18.
In the last decade, the demand for edible niche oils has increased. Therefore, the aim of this study was to characterize the seeds hemp (Cannabis sativa L.) varieties: ‘Finola’ (FIN-314)’, ‘Earlina 8FC’, and ‘Secuieni Jubileu’, and cold and hot pressed oils were prepared from each seed. The seeds were examined for moisture content, granulometric distribution, bulk density, and fat content. Seeds were pressed without and with preconditioning (60 °C), and oil yield and pressing time were recorded. The oil was filtered through cellulose membranes. Oil–water content, oil color, fatty acid profile, and sterol content were studied. From the study conducted, there are significant differences in the parameters of oil recovery and its quality compared to ‘Finola’ seed oil, which is widely reported in the literature. ‘Finola’ oil yield was the lowest, with an average of 79% compared to ‘Earlina’ (82%) and ‘S. Jubileu’ (84%). All oil samples contained a comparable amount of sterols, with campesterol (0.32 mg/g), β-sitosterol (1.3 mg/g) and Δ5-avenasterol (0.15 mg/g) predominating. From the organoleptic evaluation, it was evident that both varieties hemp oils and marc (‘Earlina’ and ‘S. Jubileu’) were not bitter like the “Finola” oil and marc. More detailed studies in this direction have to be undertaken.  相似文献   

19.
This study assessed the pyrolysis liquids obtained by slow pyrolysis of industrial hemp leaves, hurds, and roots. The liquids recovered between a pyrolysis temperature of 275–350 °C, at two condensation temperatures 130 °C and 70 °C, were analyzed. Aqueous and bio-oil pyrolysis liquids were produced and analyzed by proton nuclear magnetic resonance (NMR), gas chromatography–mass spectrometry (GC-MS), and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS). NMR revealed quantitative concentrations of the most abundant compounds in the aqueous fractions and compound groups in the oily fractions. In the aqueous fractions, the concentration range of acetic acid was 50–241 gL−1, methanol 2–30 gL−1, propanoic acid 5–20 gL−1, and 1-hydroxybutan-2-one 2 gL−1. GC-MS was used to compare the compositions of the volatile compounds and APPI FT-ICR MS was utilized to determine the most abundant higher molecular weight compounds. The different obtained pyrolysis liquids (aqueous and oily) had various volatile and nonvolatile compounds such as acetic acid, 2,6-dimethoxyphenol, 2-methoxyphenol, and cannabidiol. This study provides a detailed understanding of the chemical composition of pyrolysis liquids from different parts of the industrial hemp plant and assesses their possible economic potential.  相似文献   

20.
Three novel Co(II) complexes of the type [Co(C4H5O2)2L2] (where C4H5O2 is methacrylate anion; L = C3H4N2 (imidazole; HIm) (1), C4H6N2 (2-methylimidazole; 2-MeIm) (2), C5H8N2 (2-ethylimidazole; 2-EtIm) (3)) have been synthesized and characterized by elemental analysis, IR and UV-Vis spectroscopic techniques, thermal analysis and single crystal X-ray diffraction. X-ray crystallography revealed for complexes (1) and (2) distorted trigonal bipyramid stereochemistry for Co(II), meanwhile for complex (3) evidenced that the unit cell comprises three molecular units with interesting structural features. In each unit, both stereochemistry adopted by metallic ion and coordination modes of carboxylate anions are different. The screening of antimicrobial activity revealed that Candida albicans planktonic cells were the most susceptible, with minimal inhibitory concentration (MIC) values of 7.8 μg/mL for complexes (1) and (2) and 15.6 μg/mL for complex (3). Complexes (1) and (2) proved to be more active than complex (3) against the tested bacterial strains, both in planktonic and biofilm growth state, with MIC and minimal biofilm eradication concentration (MBEC) values ranging from 15.6 to 62.5 μg/mL, the best antibacterial effects being noticed against Staphylococcus aureus and Pseudomonas aeruginosa. Remarkably, the MBEC values obtained for the four tested bacterial strains were either identical or even lower than the MIC ones. The cytotoxicity assay indicated that the tested complexes affected the cellular cycle of HeLa, HCT-8, and MG63 cells, probably by inhibiting the expression of vimentin and transient receptor potential canonical 1 (TRPC1). The obtained biological results recommend these complexes as potential candidates for the development of novel anti-biofilm agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号