首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-ended acicular ZnO structure can be synthesized via a hydrothermal process with tetramethylammonium hydroxide and zinc acetate as precursors and polyvinyl alcohol (PVA) as a structure-directing agent. The as-prepared ZnO products show the well crystalline wurtzite structure with growth direction along [0 0 0 1]. For the first time, PVA is found to be employed as a reservoir of Zn2+ ions in the present study, and can control the concentration of Zn2+ in reaction solution, and the acicular morphology can be formed at the two ends of the 1-D ZnO structure, due to the effect of secondary growth that occurs as the sufficient concentration of Zn2+ ions chelated by PVA releasing to the reaction solution. Furthermore, the size of the 1-D ZnO structure can be tuned by different amounts of PVA addition.  相似文献   

2.
Shape evolution of ZnO crystals from twinned disks to single spindles was studied through solvothermal synthesis in binary solvents N,N-diethylformamide (DEF) and methanol (MeOH). The MeOH content in DEF had large influence on the morphology of the obtained ZnO crystals. In MeOH-free DEF, well-shaped ZnO twinned disks with perfect mirror symmetry could be formed through the assembly of ZnO46−–julolidinium–ZnO46− growth units on the (0 0 0 1) growth interfaces. For small amounts of MeOH (MeOH/DEF=0.04), elongated twinned disks were formed since the growth along the polar c-axis was enhanced. With increasing MeOH content (MeOH/DEF=0.1), twinned rods with reduced mirror symmetry were formed. When a large amount of MeOH was added to DEF (MeOH/DEF=0.5), single spindles rather than twinned disks or twinned rods were obtained. A similar shape evolution of zinc oxide was observed in binary solvents DEF and N,N-dimethylformamide (DMF), suggesting that the growth of ZnO crystals with tuneable shape and size can be controlled by the composition of the binary solvent mixture.  相似文献   

3.
In this paper, we compare the properties of ZnO thin films (0 0 0 1) sapphire substrate using diethylzinc (DEZn) as the Zn precursor and deionized water (H2O) and nitrous oxide (N2O) as the O precursors, respectively in the main ZnO layer growth by atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD) technique. Surface morphology studied by atomic force microscopy (AFM) showed that the N2O-grown ZnO film had a hexagonal columnar structure with about 8 μm grain diameter and the relatively rougher surface compared to that of H2O-grown ZnO film. The full-widths at half-maximum (FWHMs) of the (0 0 0 2) and () ω-rocking curves of the N2O-grown ZnO film by double-crystal X-ray diffractometry (DCXRD) measurement were 260 and 350 arcsec, respectively, indicating the smaller mosaicity and lower dislocation density of the film compared to H2O-grown ZnO film. Compared to H2O-grown ZnO film, the free exciton A (FXA) and its three phonon replicas could be clearly observed, the donor-bound exciton A0X (I10):3.353 eV dominated the 10 K photoluminescence (PL) spectrum of N2O-grown ZnO film and the hydrogen-related donor-bound exciton D0X (I4):3.363 eV was disappeared. The electron mobility (80 cm2/V s) of N2O-grown ZnO film has been significantly improved by room temperature Hall measurement compared to that of H2O-grown ZnO film.  相似文献   

4.
Highly c-axis-oriented ZnO films were successfully deposited on the nucleation sides of freestanding diamond films by RF reactive magnetron sputtering. IV characteristics of ultraviolet (UV) photodetectors with ZnO/diamond structure were studied and a significant photoresponse was observed under UV light illumination. The dark-current and the photocurrent of the ZnO photodetectors were relative to the grain size and the quality of ZnO films. For the photodetector with a bigger grain size, a weaker dark current and a stronger photocurrent were obtained under 10 V bias voltage. The photocurrent rise and decay process confirmed the carrier-trapping effect.  相似文献   

5.
ZnO films with deep ultraviolet emission on (0 0 0 6) sapphire substrates were prepared by RF magnetron sputtering at periodically changing substrate temperature. It is found that the as-prepared ZnO films consist of the obvious multilayered structures from the SEM images of their cross-sections. Room temperature photoluminescence of ZnO films with multilayered structure shows two emissions centered at 332 and 388 nm with 260 nm excited wavelength. The strong deep ultraviolet emission at 332 nm is due to the O 2p dangling-bond state in the multilayered structure of ZnO films. Raman scattering spectrum of sample shows that such structured ZnO film possesses strong compressive stress.  相似文献   

6.
Sapphire and SiC are typical substrates used for GaN growth. However, they are non-native substrates and result in highly defective materials. The use of ZnO substrates can result in perfect lattice-matched conditions for 22% indium InGaN layers, which have been found to suppress phase separation compared to the same growths on sapphire. InGaN layers were grown on standard (0 0 0 2) GaN template/sapphire and (0 0 0 1) ZnO substrates by metalorganic chemical vapor deposition. These two substrates exhibited two distinct states of strain relaxation, which have direct effects on phase separation. InGaN with 32% indium exhibited phase separation when grown on sapphire. Sapphire samples were compared with corresponding growths on ZnO, which showed no evidence of phase separation with indium content as high as 43%. Additional studies in Si-doping of InGaN films also strongly induced phase separation in the films on sapphire compared with those on ZnO. High-resolution transmission electron microscopy results showed perfectly matched crystals at the GaN buffer/ZnO interface. This implied that InGaN with high indium content may stay completely strained on a thin GaN buffer. This method of lattice matching InGaN on ZnO offers a new approach to grow efficient emitters.  相似文献   

7.
Nonionic polymer poly (vinylpyrrolidone) (PVP) was firstly mixed into oxygenated zinc chloride electrolyte to modulate the crystal growth and morphology of ZnO from electrodeposition. Arrays of ZnO hexagonal prisms with well-defined (0 0 0 1) end facets and side facets were grown perpendicularly onto p-type Si substrates using the simple and economic route. It was observed that the concentration of PVP played an important role in the final morphology and size of ZnO crystals. The optical studies indicated that the addition of PVT not only influenced crystal growth habit but also improved the optical properties of ZnO.  相似文献   

8.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   

9.
Nitrogen was incorporated into ZnO films grown by metalorganic chemical vapour deposition (MOCVD) on ZnO substrates using DMZn-TEN, tert-butanol and diallylamine, respectively, as zinc, oxygen and doping sources. The carrier gas was either hydrogen or nitrogen and the partial pressure ratio (RVI/II) was varied in order to favor the nitrogen incorporation and/or reduce carbon related defects. The ZnO films have been characterized by Micro-Raman scattering and SIMS measurements. SIMS measurements confirm the nitrogen incorporation with concentrations extending from ∼1019 cm−3 to ∼4×1020 cm−3. Raman spectra show nitrogen local vibration modes in films grown at low RVI/II ratio and using H2 as carrier gas. However, a vibration band attributed to carbon clusters dominates the Raman spectra for films grown with N2 carrier. The contribution of N complexes was discussed. The strain was calculated for the as-grown and annealed films and it changes from tensile to compressive after annealing.  相似文献   

10.
ZnO nanowires with variable aspect ratios and microstructures have been prepared by a hydrothermal reaction of Zn foil and Na2C2O4 solution at 140 °C. The ZnO nanowires are single crystalline with the wurtzite structure and grow in the [0 0 0 1] direction, and their aspect ratios and microstructures can be changed by tuning the reaction time and the Na2C2O4 concentration. UV and blue-green emissions that depended on the Na2C2O4 concentration are observed from the ZnO nanowires with different aspect ratios. The photosensitivity of ZnO ultralong nanowires with honeycomb-like micropatterns is found to be about 10 at 5 V.  相似文献   

11.
A facile approach to fabricate Mn-doped ZnO hollow nanospheres is reported. Zn2+ and Mn2+ cations were adsorbed onto the surface of carbon template to form a core/shell structure in solution. Subsequent calcination of the core/shell structure would lead to the formation of Mn-doped ZnO hollow nanospheres. The magnetic properties of the hollow spheres were dependent on the calcination temperature. The room-temperature ferromagnetism was obtained when the temperature was less than 900 °C. However, the ferromagnetic behavior disappeared when the temperature was elevated to 1200 °C. The possible reason is the short-ranged ferromagnetic spin–spin interaction between neighboring Mn atoms by forming a bridge bond by Hi.  相似文献   

12.
A simple growth technique capable of growing a variety of zinc oxide (ZnO) nanostructures with record growth rates of 25 μm/s is demonstrated. Visible lengths of ZnO nanowires, nanotubes, comb-like and pencil-like nanostructures could be grown by employing a focused CO2 laser-assisted heating of a sintered ZnO rod in ambient air, in few seconds. For the first time, the growth process of nanowires was videographed, in-situ, on an optical microscope. It showed that ZnO was evaporated and presumably decomposed into Zn and oxygen by laser heating, reforming ZnO nanostructures at places with suitable growth temperatures. Analysis on the representative nanowires shows a rectangular cross-section, with a [0 0 0 1] growth direction. With CO2 laser heating replacing furnace heating used conventionally, and using different reactants and forming gases, this method could be easily adopted for other semiconducting inorganic nanostructures in addition to ZnO.  相似文献   

13.
Dense vertical arrays of indium doped ZnO nanoplates have been grown by thermal treatment of compacted ZnS–In2O3 powders with 0.35 at% of In. The distribution of nanoplates is related to the grain structure of the substrate. Only a small content of In has been detected in the plates by energy dispersive X-ray spectroscopy, but comparison with previous works shows that its presence in the precursor determines the growth of the nanoplates. Increase in the amount of In in the precursor leads to the growth of long indium doped ZnO nanobelts. Cathodoluminescence spectra of the nanobelts show a 23 meV blue shift of the band edge emission.  相似文献   

14.
Fabrication of Zn/ZnO nanocables by thermal oxidation of Zn nanowires grown by RF magnetron sputtering is reported. Single crystalline Zn nanowires could be grown by controlling supersaturation of source material through the adjustment of temperature and Zn RF power. X-ray diffraction and high-resolution transmission electron microscopy showed that surfaces of these Zn nanowires, grown along the [0 1 0] direction, gradually oxidized inward the Zn core to form coaxial Zn/ZnO nanocables in the subsequent oxidation at 200 °C. In the Zn/ZnO nanocable, epitaxial relations of [1 0 0]Zn//[1 0 0]ZnO, and (0 0 1)Zn//(0 0 1)ZnO existed at the interface between the Zn core and ZnO shell. A number of dislocations were also observed in the interface region of the Zn/ZnO nanocable, which are attributed to large differences in the lattice constants of Zn and ZnO. With further increasing the oxidation temperature over 400 °C, Zn nanowires were completely oxidized to form polycrystalline ZnO nanowires. The results in this study suggest that coaxial Zn/ZnO nanocable can be fabricated through controlled thermal oxidation of Zn nanowires, yielding various cross-sectional areal fractions of Zn core and ZnO shell.  相似文献   

15.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

16.
ZnO films on Al2O3 substrate were grown by using a pulsed laser deposition method. Through photoluminescence (PL) and X-ray diffraction (XRD) measurements, the optimum growth conditions for the ZnO growth were calculated. The results of the XRD measurement indicate that ZnO film was strongly oriented to the c-axis of hexagonal structure and epitaxially crystallized under constraints created by the substrate. The full-width half-maximum for a theta curve of the (0 0 0 2) peak was 0.201°. Also, from the PL measurement, the grown ZnO film was observed to be a free exciton, which indicates a high quality of epilayer. The Hall mobility and carrier density of the ZnO film at 293 K were estimated to be 299 cm2/V sec and , respectively. The absorption spectra revealed that the temperature dependence of the optical band gap on the ZnO films was .  相似文献   

17.
Vertically aligned arrays of ZnO nanorod were synthesized on the Au/SiO2/Si(1 0 0) substrate by a simple aqueous solution growth process, without pre-prepared ZnO seed layer. For comparison, glass and SiO2/Si were also used as substrates, and the results show that the Au layer plays a decisive role in orienting the growth of the ZnO nanorod. The effects of other growth parameters, including Zn2+ concentration and growth time, on morphology, density, and orientation of the ZnO nanostructure were also studied and with longer reaction time, a new structure namely ZnO nanotip was obtained. Moreover, the growth mechanism of ZnO nanorod arrays grown on the Au/SiO2/Si substrate was proposed.  相似文献   

18.
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V.  相似文献   

19.
Single phase Mn (2.5 at%) doped ZnO nanocrystalline samples were synthesized by reverse micelle method as characterized by Rietveld refinement analysis of X-ray diffraction data, high resolution transmission electron microscopy and selected area electron diffraction analyses. The X-ray photoelectron spectroscopy and electron paramagnetic resonance (EPR) studies indicated that manganese exist as Mn2+ in ZnO lattice. DC magnetization measurements as a function of field and temperature, of 2.5 at% Mn doped ZnO nanoparticles annealed at 675 K, showed room temperature ferromagnetism (RTF). This observation is further confirmed by the EPR spectrum of the sample, which shows a distinct ferromagnetic resonance signal at room temperature. These results indicate that the observed RTF in Mn-doped ZnO may be attributed to the substitutional incorporation of Mn at Zn sites.  相似文献   

20.
The 30° rotation domains in ZnO films were studied by transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The cross-section and plane-view observations reveal that the 30° rotation domains have elliptical cylindrical shape, with the longitude axis along one of the 1 1 2¯ 0 directions and the short axis along one of the 1¯ 1 0 0 orientations, respectively. The volume fraction of the 30° rotation domains is about 1%. Due to the elliptical shape of the domain boundaries along the [0 0 0 1]ZnO direction, partially disordered superlattice-like structures are formed. As shown by the HREM images and Zn elemental mapping, these super-lattices are most likely caused by periodical segregation and depletion of Zn along the domain boundary for compensating the mismatched lattice strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号