首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The electronic structure and optical properties of 13 chelating heteroatomic conjugated molecules such as pyridine, benzoxazole, and benzothiazole derivatives, which are used as C–N ligands in organometallic compounds, have been investigated. The geometries of the ground and first excited states were obtained by the DFT and CIS methods, respectively, followed by the SAC-CI calculations of the transition energies for absorption and emission. For six compounds whose experimental data are available, the SAC-CI calculations reproduced the experimental values satisfactorily with deviations of less than 0.3 eV for absorption and 0.1 eV for emission except for benzoxazoles. For other molecules, the theoretical absorption and emission spectra were predicted. The lowest ππ* excited-state geometries was calculated to be planar for most of the molecules with two or three conjugated rings connected by single bond. The geometry change due to the ππ* excitation was qualitatively interpreted by electrostatic force theory based on SAC/SAC-CI electron density difference. The excitations are relatively localized in the central region and in the lowest ππ* excited state, the inter-ring single bond shows large change, with a contraction of 0.05–0.09 Å. The present calculations provide reliable information regarding the energy levels of these chelating heteroatomic conjugated compounds.  相似文献   

2.
Fluoranthene and benzo[k]fluoranthene-based oligoarenes are good candidates for organic light-emitting diodes (OLEDs). In this work, the electronic structure and optical properties of fluoranthene, benzo[k]fluoranthene, and their derivatives have been studied using quantum chemical methods. The ground-state structures were optimized using the density functional theory (DFT) methods. The lowest singlet excited state was optimized using time-dependent density functional theory (TD-B3LYP) and configuration interaction singles (CIS) methods. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the TD-DFT method with a variety of exchange-correlation functionals. All the calculations were carried out in chloroform medium. The results show that the absorption and emission spectra calculated using the B3LYP functional is in good agreement with the available experimental results. Unlikely, the meta hybrid functionals such as M06HF and M062X underestimate the absorption and emission spectra of all the studied molecules. The calculated absorption and emission wavelength are more or less basis set independent. It has been observed that the substitution of an aromatic ring significantly alters the absorption and emission spectra.  相似文献   

3.
In this work, we take a different angle to the benchmarking of time-dependent density functional theory (TD-DFT) for the calculation of excited-state geometries by extensively assessing how accurate such geometries are compared to ground-state geometries calculated with ordinary DFT. To this end, we consider 20 medium-sized aromatic organic compounds whose lowest singlet excited states are ideally suited for TD-DFT modeling and are very well described by the approximate coupled-cluster singles and doubles (CC2) method, and then use this method and six different density functionals (BP86, B3LYP, PBE0, M06-2X, CAM-B3LYP, and ωB97XD) to optimize the corresponding ground- and excited-state geometries. The results show that although each hybrid functional reproduces the CC2 excited-state bond lengths very satisfactorily, achieving an overall root mean square error of 0.011 Å for all 336 bonds in the 20 molecules, these errors are distinctly larger than those of only 0.004–0.006 Å with which the hybrid functionals reproduce the CC2 ground-state bond lengths. Furthermore, for each functional employed, the variation in the error relative to CC2 between different molecules is found to be much larger (by at least a factor of 3) for the excited-state geometries than for the ground-state geometries, despite the fact that the molecules/states under investigation have rather uniform chemical and spectroscopic character. Overall, the study finds that even in favorable circumstances, TD-DFT excited-state geometries appear intrinsically and comparatively less accurate than DFT ground-state ones.  相似文献   

4.
The structures and electronic states of a series of phenyl-capped oligothiophenes (PnTs) and their ionic species were investigated by means of the density functional theory (DFT). The calculations were performed on the oligomers formed by n repeating units, where n ranges from 2 to 6, using the B3LYP/6-31G** level of theory. The results obtained show that the end-substitution plays a fine-tuning effect on the geometries, electronics, and excitation states. It was found that the oligomers in the doped state have more satisfactory structural and electronic characteristics for the conducting polymers. The conjugated system in the doped oligomers has more aromaticity, with expanded and planar chains. The calculated energy gap values between the frontal molecular orbitals for the PnTs indicate that with increasing the oligomer chain length, the conductive band gap decreases. The calculated ?rst excitation energies of the PnTs at the TD-B3LYP/6-31G** level reveal that the doped PnTs have lower excitation energies than the neutral states. The oligomer chains with a phenyl ring as the end-capped group display red shifts in their absorption spectra. The end-caped substituted oligothiophenes display better characteristics than the unsubstituted ones. It could be anticipated that the phenyl-caped substitution would be helpful to charge-carrier hopings between chains, and thereby, enhance the conductivity.  相似文献   

5.
Yang L  Ren AM  Feng JK  Liu XD  Ma YG  Zhang HX 《Inorganic chemistry》2004,43(19):5961-5972
The photophysical properties, which vary as X is varied, of Re(I)-halide complexes (X2-bpy)ReICl(CO)3 (where X=ph, DAE, DNE, and DPE; ph = phenyl (1); DAE = di(amineoethynylbenzene) (2); DPE = di(phenylethynylbenzene) (3); DNE = di(nitroethynylbenzene) (4); bpy=2,2'bipyridine), are investigated using density functional theory (DFT). The electronic properties of the neutral molecules, in addition to the positive and negative ions, are studied using B3LYP functional. Excited singlet and triplet states are examined using time-dependent density functional theory (TDDFT). The low-lying excited-state geometries are optimized at the ab initio configuration interaction singlets level. As shown, the diarylethynyl-based structure is an integral component of the bpy pi-conjugated network, which results in a good planar structure. The occupied orbitals involved in the transitions have a significant mixture of metal Re and group Cl, and the lowest unoccupied orbital is a pi orbital, which extends from ligand bpy to diarylethynyl-based substituents. The luminescence for each complex originates from the lowest triplet excited states and is assigned to the mixing of MLCT and LLCT characters. Significant insights on the effects of these diarylethynyl conjugated structure and ending substituents (NH2, ph, and NO2) on absorption and emission spectra are observed by analysis of the results of the TDDFT method. The diarylethynyl-based pi-conjugated network makes both the absorption and emission spectra red-shifted compared with simple complex (bpy)ReICl(CO)3. Furthermore, an electron-releasing group (NH2) makes absorption and emission spectra blue-shift and an electron-withdrawing group (NO2) makes them red-shift.  相似文献   

6.
Theoretical study was performed to investigate how the degree of hydration affects the structures and properties of the canonical form (keto-N9H) of guanine in the ground and lowest singlet pipi* excited state. This work is the continuation of our earlier work where we have studied the hydration of guanine in the first solvation shell with one, three, five, and six water molecules. In the present investigation, we have considered 7-13 water molecules in hydrating guanine. Ground-state geometries were optimized at the Hartree-Fock level, whereas the configuration interaction-singles (CIS) method was used for the excited-state geometry optimization. The 6-311G(d,p) basis set was used in all calculations. The harmonic vibrational frequency analysis was used to determine the nature of the optimized ground- and excited-state potential energy surfaces; all geometries were found to be minima at the respective potential surfaces. It was found that the degree of hydration has a significant influence on the excited-state structural nonplanarity of guanine. It is expected that excited-state dynamics of guanine will depend on the degree of hydration. Ground- and excited-state geometries of selected hydrated species were also optimized in the bulk water solution using the polarizable continuum model (PCM). It was found that bulk water solution generally does not have significant influence on the structure of the hydrated species. Effects of hydration on different stretching vibrations in the ground and excited states are also discussed.  相似文献   

7.
The dependence of the thin film morphology and excited-state dynamics for the low-bandgap donor-acceptor copolymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) in pristine films and in blends (1:2) with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) on the use of the solvent additive 1,8-octanedithiol (ODT) is studied by solid-state nuclear magnetic resonance (NMR) spectroscopy and broadband visible and near-infrared pump-probe transient absorption spectroscopy (TAS) covering a spectral range from 500-2000 nm. The latter allows monitoring of the dynamics of excitons, bound interfacial charge-transfer (CT) states, and free charge carriers over a time range from femto- to microseconds. The broadband pump-probe experiments reveal that excitons are not only generated in the polymer but also in PCBM-rich domains. Depending on the morphology controlled by the use of solvent additives, polymer excitons undergo mainly ultrafast dissociation (<100 fs) in blends prepared without ODT or diffusion-limited dissociation in samples prepared with ODT. Excitons generated in PCBM diffuse slowly to the interface in both samples and undergo dissociation on a time scale of several tens of picoseconds up to hundreds of picoseconds. In both samples a significant fraction of the excitons creates strongly bound interfacial CT states, which exhibit subnanosecond geminate recombination. The total internal quantum efficiency loss due to geminate recombination is estimated to be 50% in samples prepared without ODT and is found to be reduced to 30% with ODT, indicating that more free charges are generated in samples prepared with solvent additives. In samples prepared with ODT, the free charges exhibit clear intensity-dependent recombination dynamics, which can be modeled by Langevin-type recombination with a bimolecular recombination coefficient of 6.3 × 10(-11) cm(3) s(-1). In samples prepared without ODT, an additional nanosecond recombination of polaron pairs is observed in conjunction with an increased intensity-independent trap-assisted nongeminate recombination of charges. Furthermore, a comparison of the triplet-induced absorption spectra of PCPDTBT with the charge-induced absorption in PCPDTBT:PCBM blends reveals that triplets have a very similar excited-state absorption spectrum compared to the free charge carriers, however, in contrast have a distinct intensity-independent lifetime. Overall, our results suggest that whether free charges or strongly bound CT states are created upon dissociation of excitons at the PCPDTBT:PCBM interface is determined instantaneously upon exciton dissociation and that once formed strongly bound CT states rapidly recombine and thus are unlikely to dissociate into free charges. The observation of a significantly larger bimolecular recombination coefficient than previously determined for poly(3-hexylthiophen-2,5-diyl):PCBM (P3HT:PCBM) and PCDTBT:PCBM samples indicates that nongeminate recombination of free charges considerably competes with charge extraction in PCPDTBT:PCBM photovoltaic devices.  相似文献   

8.
The optical transitions of three different size oligo(p-phenylenevinylene)-fullerene dyads (OPV(n)-MPC(60); n = 2-4) and of the corresponding separate molecules are studied using density functional theory (DFT) and time-dependent density functional theory. The DFT is used to determine the geometries and the electronic structures of the ground states. Transition energies and excited-state structures are obtained from the TDDFT calculations. Resonant energy transfer from OPV(n) to MPC(60) is also studied and the Fermi golden rule is used, along with two simple models to describe the electronic coupling to calculate the energy transfer rates. The hybrid-type PBE0 functional is used with a split-valence basis set augmented with a polarization function (SV(P)) in calculations and the calculated results are compared to the corresponding experimental results. The calculated PBE0 spectra of the OPV(n)-MPC(60) dyads correspond to the experimental spectra very well and are approximately sums of the absorption spectra of the separate OPV(n) and MPC(60) molecules. Also, the absorption energies of OPV(n) and MPC(60) and the emission energies of OPV(n) are predicted well with the PBE0 functional. The PBE0 calculated resonant energy transfer rates are in a good agreement with the experimental rates and show the existence of many possible pathways for energy transfer from the first excited singlet states of the OPV(n) molecules to the MPC(60) molecule.  相似文献   

9.
The use of time-dependent density functional calculations for the optimization of excited-state structures and the subsequent calculation of resonance Raman intensities within the transform-theory framework is compared to calculations of Hartree-Fock/configuration interaction singles-type (CIS). The transform theory of resonance Raman scattering is based on Kramers-Kronig relations between polarizability tensor components and the optical absorption. Stationary points for the two lowest excited singlet states of uracil are optimized and characterized by means of numerical differentiation of analytical excited-state gradients. It is shown that the effect of electron correlation leads to substantial modifications of the relative intensities. Calculations of vibrational frequencies for ground and excited states are carried out, which show that the neglect of Duschinsky mixing and the assumption of equal wave numbers for ground and excited state are not in all cases good approximations. We also compare the transform-theory resonance Raman intensities with those obtained within a simple approximation from excited-state gradients at the ground-state equilibrium position, and find that they are in qualitative agreement in the case of CIS, but show some important differences in calculations based on density functional theory. Since the results from CIS calculations are in better agreement with experiment, we also present approximate resonance Raman spectra obtained using excited-state gradients from multireference perturbation theory calculations, which confirm the CIS gradients.  相似文献   

10.
We compared detailed dynamics of the excited-state absorption for C60 in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C60 molecules plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of our C60-glass composites occur on long (ns) timescales, comparable to those in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that C60-sol-gel glass composites contain C60 in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600±100ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450–950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620–810 nm.  相似文献   

11.
Effect of In, Al and Sn dopants on the optical and structural properties of ZnO thin films have been investigated by X-ray diffraction technique and optical characterization method. X-ray diffraction patterns confirm that the films have polycrystalline nature. The thin films have (002) as the preferred orientation. This (002) preferred orientation is due to the minimal surface energy which the hexagonal structure, c-plane to the ZnO crystallites, corresponds to the densest packed plane. The grain size values of the films are found to be 29.0, 35.2 and 39.5 nm for In, Al and Sn doped ZnO thin films, respectively. The optical band gaps of the films were calculated. The absorption edge shifts to the lower wavelengths with In, Al and Sn dopants. The inclusion of dopant into films expands also width of localized states as E(UIn)>E(UAl)>E(USn). The refractive index dispersion curves obey the single oscillator model. The dispersion parameters and optical constants of the films were determined. These parameters changed with In, Al and Sn dopants.  相似文献   

12.
We discuss the electron-vibration coupling in mono-aza-[5]helicenes on the basis of a Franck-Condon analysis and density functional theory (DFT) calculations of the fluorescence and phosphorescence spectra measured in ethanol. The geometries of the initial states were obtained from time-dependent DFT (S(1)) and unrestricted DFT (T(1)) excited-state optimizations. In general, the position of the nitrogen atom has only a minor impact on the vibronic fine-structure in both absorption and emission. The shapes of the emission spectra from the lowest singlet and triplet states are found to be determined by contributions from multiple normal modes. The results of the calculations demonstrate how the interplay among these normal modes results in qualitatively and quantitatively different spectra for fluorescence and phosphorescence.  相似文献   

13.
Grazing angle photoluminescence (GPL) originates from a waveguided light emitted at grazing angle to the substrate due to the total internal reflections, and the light emission is polarized with enhanced intensity at selective mode wavelength. GPL measurements reveal the optical anisotropy of luminescent conjugated polymers, in particular, the alignment of emitting dipoles from which emission occurs, in contrast to spectroscopic ellipsometry measurements that give the anisotropy in the absorption. Based on the GPL emission intensities and spectra, we investigate the anisotropic optical properties in electroluminescent poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) conjugated polymer thin films of different molecular weights (M(n) = 9-255 kg/mol), both in the pristine and annealed states. The optical anisotropy in F8BT films generally increases with molecular weight, suggesting that higher molecular weight polymers with longer chains are more likely to lie in-plane to the substrate. Upon annealing, high molecular weight F8BT films show even a higher degree of anisotropy, in contrast to low molecular weight F8BT films that become more isotropic. Annealing causes the polymer chains to rearrange and adopt a configuration in which the interchain exciton migration to better ordered low energy (LE) emissive states is strongly suppressed. We observe that the emissive states in F8BT are strongly affected by the local polymer chain arrangement, producing the less ordered high energy (HE) emissive states near the substrate interface where there is a higher degree of chain disorder and the LE states in the bulk of the film. When spin coated onto a quartz substrate precoated with a poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) layer, films of F8BT show severe luminescence quenching near the PEDOT:PSS interface for both the LE and HE emissive states, but a selective quenching of the LE states in the bulk of the film. These observations have important implications for fabricating efficient electronic devices using conjugated polymers as an active material, since the performance of these devices will strongly depend on anisotropic optical properties of electroluminescent conjugated polymers.  相似文献   

14.
Ambipolar diphenylamino end-capped oligofluorenylthiophenes and fluoroarene-thiophene show great potential for application in organic light-emitting diodes (OLEDs). Here, we provide an in-depth investigation on the optical and electronic properties of OF(2)TP-NPh ( 1a), OF(2)DTP-NPh ( 2a), OF(2)TTP-NPh ( 3a), OF(2)QTP-NPh ( 4a), and 2,5-bis-(2,3,5,6-tetrafluoro-4-trifluoromethyl-phenyl)-2,2':5',2':5',2'-quaterthiophene ( 5a). The geometric and electronic structures of the oligomers in the ground-state are studied with density functional theory (DFT) and ab initio Hartree-Fock, whereas the lowest singlet excited states are optimized by ab initio CIS. The energies of the lowest singlet excited states are calculated by employing time-dependent density functional theory (TDDFT). The results show that the highest occupied molecular orbitals, lowest unoccupied molecular orbitals, energy gaps, ionization potentials, and electron affinities for the oligomers are affected by the thiophene chain length and the different end-caps. The absorption and emission spectra exhibit red shifts to some extent due to the increasing thiophene chain length and the enhancing electron-donating property of the end-caps. Furthermore, the large Stokes shifts ranging from 58 to 80 nm are examined, resulting from a more planar conformation of the excited-state between the two adjacent units in the oligomers. All the calculated data show that the fluoroarene-thiophene has improved electron transport rate and charge transfer balance performance, and all the studied molecules can be used as ambipolar-transporting materials in OLEDs.  相似文献   

15.
Computational investigations into the ground and singlet excited-state structures and the experimental ground-state absorption spectra of N-confused tetraphenylporphyrin tautomers 1e and 1i and N-confused porphines (NCP) 2e and 2i have been performed. Structural data for the ground state, performed at the B3LYP/6-31G(d), B3LYP/6-31+G(d)//B3LYP/6-31G(d), and B3LYP/6-311+G(d)//B3LYP/6-31G(d) levels, are consistent with those performed at lower levels of theory. Calculations of the gas-phase, ground-state absorption spectrum are qualitatively consistent with condensed phase experiments for predicting the relative intensities of the Q(0,0) and Soret bands. Inclusion of implicit solvation in the calculations substantially improves the correlation of the energy of the Soret band with experiment for both tautomers (1e, 435 nm predicted, 442 nm observed in DMAc; 1i, 435 nm predicted, 437 nm observed in CH2Cl2). The x- and y-polarized Q-band transitions were qualitatively reproduced for 1e in both the gas phase and with solvation, although the low-energy absorption band in 1i was predicted at substantially higher energy (646 nm in the gas phase and 655 nm with solvation) than observed experimentally (724 nm in CH2Cl2). Franck-Condon state and equilibrated singlet excited-state geometries were calculated for unsubstituted NCP tautomers 2e and 2i at the TD-B3LYP/SVP and TD-B3LYP/TZVP//TD-B3LYP/SVP levels. Electronic difference density plots were calculated from these geometries, thereby indicating the change of electron density in the singlet excited states. Adiabatic S1 and S2 geometries of these compounds were also calculated at the TD-B3LYP/SVP level, and the results indicate that while 2i is a more stable ground-state molecule by approximately 7.0 kcal mol-1, the energy difference for the S1 excited states is only approximately 1.0 kcal mol-1 and is 6.1 kcal mol-1 for the S2 excited states.  相似文献   

16.
LIU Gang  LI De-Hua  ZHANG Ru 《结构化学》2011,30(8):1115-1121
The systematic trends and effect introduced by Zr and C co-doping to TiO2 of electronic structure and optical properties of anatase TiO2 have been calculated by the plane-wave ultra-soft pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for the exchange-correlation potential. Through the current calculations, the density of states (DOS), energy band structure and optical absorption coefficients have been obtained for TiO2 and compared with the doped TiO2, and the influence of electronic structure and optical properties caused by Zr and C co-doping has been presented qualitatively together. The results revealed that the energy band gap has been decreased owing to the doped Zr and C, whereas the optical absorption coefficients have been increased in the region of 400~800 nm and a red shift of absorption band can be found. Accordingly, photo catalytic activity of TiO2 has been enhanced. The current calculations are in good agreement with the experimental data.  相似文献   

17.
10-Methoxy-2-phenylbenzo[h]quinoline (MPBQ) has been synthesized and characterized by NMR and X-ray single crystal diffraction. Both the ground and the lowest singlet excited-state geometries of MPBQ were optimized by B3LYP and ab initio CIS methods at 6-31G (d,p) level, respectively. The absorption and emission spectra of the compound were experimentally determined in CH(3)CN solution and were simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in CH(3)CN solution. The calculated absorption and emission wavelengths were in good agreement with the experimental ones. The calculated lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT). And the calculated fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. These results show that MPBQ exhibited excellent thermal stability and could serve as a useful photoluminescence material.  相似文献   

18.
The optical properties of pentacene (PEN) and perfluoropentacene (PFP) thin films on various SiO(2) substrates were studied using variable angle spectroscopic ellipsometry. Structural characterization was performed using x-ray reflectivity and atomic force microscopy. A uniaxial model with the optic axis normal to the sample surface was used to analyze the ellipsometry data. A strong optical anisotropy was observed, and enabled the direction of the transition dipole of the absorption bands to be determined. Furthermore, comparison of the optical constants of PEN and PFP thin films with the absorption spectra of the monomers in solution shows significant changes due to the crystalline environment. Relative to the monomer spectrum, the highest occupied molecular orbital to lowest unoccupied molecular orbital transition observed in PEN (PFP) thin film is reduced by 210 meV (280 meV). A second absorption band in the PFP thin film shows a slight blueshift (40 meV) compared to the spectrum of the monomer with its transition dipole perpendicular to that of the first absorption band.  相似文献   

19.
Polyaniline is emerging as an important polymer material which offers challenging opportunities for both fundamental research and new technological applications in waveguides. Metal doped polyaniline has been prepared initially in the form of powder by a solution growth technique. The emeraldine salt with doped metal was also prepared by solution growth technique. This powder was used for vacuum evaporation on optically flat glass substrate. The dark green doped (Fe, Al) polyaniline thin films were prepared by vacuum evaporation technique (10?4 torr). Deposited waveguide thin films have been characterized structurally, using X‐ray diffraction (XRD), optically etc. Effective refractive index of the thin film waveguide was also calculated theoretically and experimentally. Waveguide parameters, namely refractive index, propagation loss and depth of vacuum deposited polyaniline thin films optical waveguide have been determined. The optical spectra and structure and waveguide parameters of vacuum deposited polyaniline thin films are strongly affected by the type of doping. It is possible to reduce the losses by addition of Fe to the vacuum deposited polyanine thin film and modify the effective refractive index (Oeff) according to particular requirements. Results are compared with the results in the literature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
掺硼p型非晶硅薄膜的制备及光学性能的表征   总被引:1,自引:0,他引:1  
以高氢稀释的硅烷(SiH4 )为反应气体,硼烷(B2H6)为掺杂气体,利用RF-PECVD方法,在玻璃衬底上制备出掺硼的氢化非晶硅(a-Si:H)薄膜,研究了硼掺杂量对氢化非晶硅(a-Si:H)薄膜的光学性能的影响.利用NKD-7000 W光学薄膜分析系统测试薄膜的透射谱和反射谱,并利用该系统的软件拟合得出薄膜的折射率、消光系数、吸收系数等光学性能参数,利用Tauc法计算掺硼的非晶硅薄膜的光学带隙.实验结果表明,随着硼掺杂量的增加,掺杂非晶硅薄膜样品在同一波长处的折射率先增大后减小,而且每一样品均随着入射光波长的增加而减小,在波长500 nm处的折射率均达到4.3以上;薄膜的消光系数和吸收系数随着硼掺杂量的增大而增大,在500 nm处的吸收系数可高达1.5×105cm-1.在实验的硼掺杂范围内,光学带隙从1.81 eV变化到1.71 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号