首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work characterizes the impact of lipid symmetry/asymmetry on drying/rehydration reorganization in phase-separated dilauroylphosphatidylcholine (DLPC)/distearoylphosphatidylcholine (DSPC) supported lipid bilayers (SLBs) at the submicron and micron-scale. In addition the prevention of major drying/rehydration reorganization by the use of trehalose is demonstrated. Even though it was found using fluorescence microscopy that micrometer scale structure is preserved in the presence and absence of trehalose upon drying/rehydration, AFM and FRAP experiments successfully revealed major changes in the phase-separated structure such as defects, obstructions, lipid condensation, collapse structures, and complex incomplete DLPC-DSPC mixing/exchange in the absence of trehalose. In the presence of trehalose the membrane preserves its structure at the nanometer scale and mobility. We found that SLBs with asymmetric domain configurations underwent major rearrangements during drying and rehydration, whereas the symmetric domain configuration mainly rearranged during rehydration, that we hypothesize is related to lower transmembrane cohesiveness or lack of anchoring to the substrate in the case of the asymmetric domains.  相似文献   

2.
An antioxidative liposome catalysis that mimics both superoxide dismutase (SOD) and peroxidase (POD) activities has been developed by using the liposomes modified with lipophilic Mn-(5,10,15,20-tetrakis[1-hexadecylpyridium-4-yl]-21H,23H-porphyrin) (Mn-HPyP). The SOD- and POD-like activities of the Mn-HPyP-modified liposome were first investigated by varying the type of phospholipid, such as 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). Higher SOD-like activity was obtained in the case of DLPC and DMPC liposomes, in which the ligands were well-dispersed on the membrane in the liquid crystalline phase. The POD-like activity was maximal in the case of DMPC liposome, in which the Mn-HPyP complex was appropriately clustered on the membrane in the gel phase. On the basis of the above results, the co-induction of the SOD and POD activities to eliminate the superoxide and also hydrogen peroxide as a one-pot reaction was finally performed by using the Mn-HPyP-modified DMPC liposome, resulting in an increase in the efficiency of the elimination of both superoxide and hydrogen peroxide.  相似文献   

3.
This paper records what is believed to be the first evidence for the reorganization of the liquid-ordered phase by ethanol. Specifically, ethanol has been found to significantly enhance sterol-phospholipid association in liquid-ordered bilayers derived from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) plus cholesterol and also 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) plus cholesterol. The evidence for such reorganization comes from a series of nearest-neighbor recognition (NNR) experiments that have been carried out, where low concentrations of equilibrating lipid dimers (i.e., "reporter molecules") have been used to detect changes in the phase composition of host membranes made from varying mixtures of DPPC/cholesterol, and also DSPC/cholesterol, in the presence and in the absence of ethanol. These findings have important biological implications, which are briefly discussed.  相似文献   

4.
In this communication, we demonstrate the first use of sum-frequency generation (SFG) vibrational spectroscopy to measure directly the phase transition temperature (Tm) of a single planar supported lipid bilayer (PSLB). Three saturated phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (DHPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), were studied. Lipid bilayer films were prepared by the the Langmuir-Blodgett method at a surface pressure of 30 nN/m. The symmetric nature of the bilayer was used to determine the Tm of bilayers by measuring the intensity of the symmetric methyl stretch at 2875 cm-1 from the lipid fatty acid chains as a function of temperature. A maximum in the CH3 symmetric stretch transition was observed at the Tm of the lipid film due to the reduction of symmetry in the bilayer. The SFG measured Tm for DPPC, DHPC, and DSPC were 41.0 +/- 0.4, 52.4 +/- 0.7, and 57.9 +/- 0.5 degrees C, respectively. These values correlate well with the literature values of 41.3 +/- 1.8, 49 +/- 3, and 54.5 +/- 1.5 degrees C for DPPC, DHPC, and DSPC, respectively obtained by differential scanning calorimetry (DSC) of lipid vesicles in solution. The high degree of correlation between the SFG spectroscopic measurements and the DSC results suggests the Tm of these lipids is not significantly altered upon immobilization on a surface.  相似文献   

5.
Molecular interactions between paclitaxel, an anticancer drug, and phospholipids of various chain unsaturations and headgroup types were investigated in the present study by Langmuir film balance and differential scanning calorimetry. Both the lipid monolayer at the air-water interface and the lipid bilayer vesicles (liposomes) were employed as model cell membranes. It was found that, regardless of the difference in molecular structure of the lipid chains and headgroup, the drug can form nonideal, miscible systems with the lipids at the air-water interface over a wide range of paclitaxel mole fractions. The interaction between paclitaxel and phospholipid within the monolayer was dependent on the molecular area of the lipids at the interface and can be explained by intermolecular forces or geometric accommodation. Paclitaxel is more likely to form thermodynamically stable systems with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dielaidoyl-sn-glycero-3-phosphocholine (DEPC) than with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Investigation of the drug penetration into the lipid monolayer showed that DPPC and DEPC have higher incorporation abilities for the drug than DPPE and DSPC. A similar trend was also evidenced by DSC investigation with liposomes. While little change of DSC profiles was observed for the DPPE/paclitaxel and DSPC/paclitaxel liposomes, paclitaxel caused noticeable changes in the thermographs of DPPC and DEPC liposomes. Paclitaxel was found to cause broadening of the main phase transition without significant change in the peak melting temperature of the DPPC bilayers, which demonstrates that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer, i.e., in the region of the C1-C8 carbon atoms of the acyl chain or binding at the polar headgroup site of the lipids. However, it may penetrate into the deeper hydrophobic zone of the DEPC bilayers. These findings provide useful information for liposomal formulation of anticancer drugs as well as for understanding drug-cell membrane interactions.  相似文献   

6.
This study aimed to produce thermosensitive liposomes (TSL) by applying the quality by design (QbD) concept. In this paper, our research group collected and studied the parameters that significantly impact the quality of the liposomal product. Thermosensitive liposomes are vesicles used as drug delivery systems that release the active pharmaceutical ingredient in a targeted way at ~40–42 °C, i.e., in local hyperthermia. This study aimed to manufacture thermosensitive liposomes with a diameter of approximately 100 nm. The first TSLs were made from DPPC (1,2-dipalmitoyl-sn-glycerol-3-phosphocholine) and DSPC (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine) phospholipids. Studies showed that the application of different types and ratios of lipids influences the thermal properties of liposomes. In this research, we made thermosensitive liposomes using a PEGylated lipid besides the previously mentioned phospholipids with the thin-film hydration method.  相似文献   

7.
The interactions of the cryoprotective agent trehalose with a lipid membrane made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at 323 K were studied by means of molecular dynamics simulations. It was observed that trehalose binds to the phospholipid headgroups with its main axis parallel to the membrane normal. Trehalose establishes hydrogen bonds with the carbonyl and phosphate groups and replaces water molecules from the lipid headgroup. Notably, the number of hydrogen bonds (HBs) that the membrane made with its environment was conserved after trehalose binding. The HBs between lipid and trehalose have a longer lifetime than those established between lipid and water. The binding of the sugar does not produce changes either in the lipid area or in the lipid order parameter. The effect of trehalose on the dipole potential is in agreement with experimental results. The contribution of the different components to the membrane dipole potential was analyzed. It was observed that the binding of trehalose produces changes in the different components and the sugar itself contributes to the surface potential due to the polarization of its hydroxyl in the interface.  相似文献   

8.
Interactions of phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene (polyaromatic hydrocarbons) with model phospholipid membranes were probed using the Langmuir technique. The lipid monolayers were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and cholesterol. Surface pressure and electrical surface potential were measured on mixed phospholipid/PAH monolayers spread on a pure water subphase. The morphology of the mixed monolayers was followed with Brewster angle microscopy. Polarization-modulation infrared reflection-absorption spectroscopy spectra obtained on DPPE/benzo[a]pyrene showed that the latter interacts with the carbonyl groups of the phospholipid. On the other hand, the activity of phospholipase A2 toward DLPC used as a probe to locate benzo[a]pyrene in the monolayers indicates that the polyaromatic hydrocarbons are not accessible to the enzyme. The results obtained show that all PAHs studied affect the properties of the pure lipid, albeit in different ways. The most notable effects, namely, film fluidization and morphology changes, were observed with benzo[a]pyrene. In contrast, the complexity of mixed lipid monolayers makes the effect of PAHs difficult to detect. It can be assumed that the differences observed between PAHs in monolayers correlate with their toxicity.  相似文献   

9.
The direct measurement of the transbilayer movement of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in a planar supported lipid bilayer (PSLB) at the fused silica/D2O interface was obtained with sum-frequency generation (SFG) vibrational spectroscopy. The intrinsic sensitivity of SFG to the symmetry of an interface was used to measure the asymmetric distribution of DSPC and perdeuterated DSPC (DSPC-d83) lipids in asymmetrically prepared DSPC/DSPC-d83 PSLBs. Changes in the membrane lipid composition due to exchange between leaflets was monitored by measuring the decay in the CH3 symmetric stretch intensity at 2875 cm-1 with time. The activation energy for transverse motion was determined directly from spectral relaxation measurements at several temperatures and was determined to be 206 +/- 18 kJ/mol. At room temperature (25 degrees C) the half-time of lipid flip-flop was calculated to be approximately 25 days. At 51 degrees C, only 7 degrees C below the main phase-transition temperature of DSPC, the half-time decreases to 25 min. These results have important implications for understanding the transbilayer movement of lipids in biological membranes.  相似文献   

10.
1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol are used to prepare liposome. Dynamic light scattering was used to study the dynamics of different concentration of the DSPC on liposomal structure. The results show that with increase of DSPC concentration the diffusion coefficient decreases. The small angle X-Ray scattering (SAXS) experiments show that an increase of the DSPC of 0.5–5% changes the size of liposomal structure from 35 to 112 nm, this is analysed in leaves of hard sphere core shell model. Moreover, the addition of NaCl at 0.001 molar can decrease the size of liposomal structure.  相似文献   

11.
The moving edge of a hydrodynamically manipulated supported lipid bilayer (SLB) can be used to catalyze SLB formation of adsorbed lipid vesicles that do not undergo spontaneous SLB formation upon adsorption on SiO(2). By removing the lipid reservoir of an initially formed SLB, we show how a hydrodynamically moved SLB patch composed of POPC can be used to form isolated SLBs with compositions that to at least 95% represent that of the adsorbed lipid vesicles. The concept is used to investigate the diffusivity of lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (rhodamine-DHPE) in SLBs made from complex lipid compositions, revealing a decrease in diffusivity by a factor of 2 when the cholesterol content was increased from 0% to 50%. We also demonstrate how the concept can be used to induce stationary domains in SLBs containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol (39:21:40 mol %, respectively). Because the method serves as a means to form SLBs with lipid compositions that hamper SLB formation via spontaneous rupture of adsorbed lipid vesicles, it opens up the possibility for new biophysical investigations of SLBs with more nativelike compositions.  相似文献   

12.
An investigation of liposomes comprised of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids with cholesterol and zinc phthalocyanine (ZnPC) revealed that several fundamental liposome properties are influenced by composition and by lipid-specific features. DMPC and DSPC liposomes were synthesized, and their compositional changes, encapsulation capacities, morphologies, and release properties were evaluated. In this research, liposome degradation, lysis, and content release were initiated by photolysis, i.e., rupture induced by exposure to light. A controlled release mechanism was created through the introduction of photosensitizers (i.e., ZnPC) embedded within the cholesterol-stabilized liposome membrane. The light wavelength and light exposure time accelerated photodegradation properties of DMPC liposomes compared to DSPC liposomes, which exhibited a slower release rate. Morphological changes in the liposomes were strongly influenced by light wavelength and light exposure time. For both the DMPC and DSPC liposomes, visible light with wavelengths in the red end of the spectrum and broad spectrum ambient lighting (400?C700?nm) were more effective for lysis than UV-A light (365?nm). Heating liposomes to 100?°C decreased the stability of liposomes compared to liposomes kept at room temperatures. In addition, the optimal lipid-to-cholesterol-to-photoactivator ratio that produced the most stable liposomes was determined.  相似文献   

13.
Griseofulvin (GF) is an oral antibiotic for widely occurring superficial mycosis in man and animals caused by dermaphyte fungi; it is also used in agriculture as a fungicide. The mechanism of the biological activity of GF is poorly understood. Here, the interactions of griseofulvin with lipid membranes were studied using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-myristoyl-sn-glycero-3-phosphoethanolamine (DMPE) monolayers spread at the air/water interface. Surface pressure (Pi), electric surface potential (Delta V), grazing incidence X-ray diffraction (GIXD), and Brewster angle microscopy (BAM) were used for studying pure phospholipid monolayers spread on GF aqueous solutions, as well as mixed phospholipid/GF monolayers spread on pure water subphase. Moreover, phospholipase A2 (PLA2) activity toward DLPC monolayers and molecular modeling of the GF surface and lipophilic properties were used to get more insight into the mechanisms of GF-membrane interactions. The results obtained show that GF has a meaningful impact on the film properties; we propose that nonpolar interactions are by and large responsible for GF retention in the monolayers. The modification of membrane properties can be detected using both physicochemical and enzymatic methods. The results obtained may be relevant for elaborating GF preparations with increased bioavailability.  相似文献   

14.
The adsorption of lipids onto spherical polymer colloids led to original assemblies presenting structural characteristics adjustable with the lipid formulation. The model system selected for this work involved sulfate-charged poly(styrene) submicrometer particles and zwitterionic/cationic lipid mixtures composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP). According to the theoretical packing parameter calculations and whatever the DPPC/DPTAP ratio, the two lipids self-assembled in aqueous media to spontaneously form vesicles. A phase transition investigation of these DPPC/DPTAP vesicles using differential scanning calorimetry revealed particular thermotropic behaviors, especially for the equimolar formulation where very strong interactions occurred between DPPC and DPTAP. Furthermore, the coating of the lipids around particles was monitored versus DPPC/DPTAP ratio by means of numerous appropriate techniques. First, a thermogravimetric analysis, providing decomposition profiles of lipid/polymer particle assemblies with temperature, was atypically carried out for such nanostructures. Then, 1H NMR spectroscopy enabled the exact DPPC/DPTAP molar ratios adsorbed on particles to be determined by differentiating both lipids. Subsequently, it also pointed out the major role of electrostatic interactions as driving forces in the assembly elaboration process. In addition to these findings, quantitative information has been collected and correlated with chemical lipid assays and permitted the statement of a lipid bilayer coverage for the assemblies prepared in water, in agreement with quasi-elastic light scattering data.  相似文献   

15.
The morphology of self-assembled phospholipid membranes (e.g., micelles, vesicles, rods, tubes, etc.) depends on the method of formation, secondary manipulation, temperature, and storage conditions. In this contribution, microfluidic systems are used to create pure phosphatidylcholine (PC) micro- and nanotubes with unprecedented lengths. Tubes up to several centimeters in length and aligned with the long axis of the microchannel were created from spots of dry films of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). These high aspect ratio structures, which, to our knowledge, represent the first examples of extended tubes formed from pure PC lipids, were examined by fluorescence microscopy, electron and optical microscopy, and optical manipulation tools (i.e., a laser trap and laser scalpel) to characterize structure and stability. In particular, the tubular structure was confirmed by observation of fluorescent dyes that were sequestered within the aqueous cavity or within the phospholipid tube. Compared to other phospholipid tubes, the tubes formed from PC lipids in microfluidic channels show high mechanical stability and rigidity that depend on tube size, age, and storage conditions.  相似文献   

16.
The membrane destabilizing and fusogenic properties of the synthetic peptide VP3(110-121), corresponding to an immunogenic sequence of the hepatitis A virus (HAV) VP3 capsid protein, were studied. By tryptophan fluorescence and acryalmide quenching it was demonstrated that the peptide binds liposomes of POPC-SM-DPPE (47 + 39 + 14) and POPC-SM-DPPE-DOTAP (40 + 33 + 12 + 15) and penetrates the membrane, at both neutral and acidic pH (POPC = 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM = sphingomyelin; DPPE = 1,2-dipalmitoylphosphatidylethanolamine; DOTAP = 1,2-dioleoyl-3-trimethylammoniumpropane). VP3(110-121) did not have membrane-destabilizing properties at neutral pH. Acid-induced destabilization of the vesicles was demonstrated by fluorescence techniques and dynamic light scattering. VP3(110-121) induced aggregation of POPC-SM-DPPE-DOTAP (40 + 33 + 12 + 15) vesicles, lipid mixing and leakage of vesicle contents, all consistent with fusion of vesicles. In POPC-SM-DPPE (47 + 39 + 14) vesicles, at acidic pH, VP3(110-121) induced membrane destabilization with leakage of contents but without aggregation of vesicles or lipid mixing. The peptide only showed fusogenic properties when bound to the vesicles at neutral pH before acidification to pH below 6.0, and no effect was seen if the peptide was added to vesicles already set at acidic pH. These results may have physiological significance in the mechanism of infection of host hepatic cells by HAV.  相似文献   

17.
The phase transition of individually addressable microstructured lipid bilayers was investigated by means of imaging ellipsometry. Microstructured bilayers were created on silicon substrates by micromolding in capillaries, and the thermotropic behavior of various saturated diacyl phosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecoyl-sn-glycero-3-phosphocholine, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) bilayers as well as DMPC/cholesterol membranes was determined by measuring the area expansion and thickness of the bilayer as a function of temperature. We found an increase in the main phase transition temperature T(M) of 2-6 degrees C and a substantially reduced cooperativity compared to multilamellar vesicles. Measurements of lateral diffusion constants D employing fluorescence recovery after photobleaching revealed, however, only a marginal decrease in D compared to those found for vesicles and multibilayers. The known dependencies of T(M) both on the chain length of diacyl PC membranes and on the cholesterol content were reproduced on a solid support. Microstructured bilayers offer the unique advantage of integrating an internal standard of known thermotropic properties, which turned out to be important for reducing the measurement error and for ruling out the slightly changing impact of the surface on the phase transition behavior due to the surface pretreatment.  相似文献   

18.
The cell glycocalyx is an attractive model for surface modification of liposomes, because its hydrated oligosaccharide layer inhibits nonspecific protein adsorption and can provide specificity towards desired sites. Here, we report on the use of lactose as a model saccharide to modify the liposome surface and examine the vesicle size and stability. Two kinds of lactosyl lipids, including lactosyl ether-lipid (6a) and lactosyl ester-lipid (6b), which contain octadecyl and octadecanoyl as the lipid tails, respectively, were synthesized and their liposomes were prepared by the extrusion method. The effects of glycolipid structure, concentration, and the pore size of the extrusion membrane on vesicle size and stability were investigated at room temperature by photon correlation spectroscopy (PCS). All liposomes with 5 or 10 mol% of lactosyl lipids had a narrow size distribution and remained stable at room temperature for at least one month, which is comparable to 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)- and poly(ethylene glycol) (PEG)-liposomes. The maximum incorporation of lactosyl ester-lipid into liposomes was 15 mol%, compared with only 10 mol% for the lactosyl ether-lipid. The lactosyl ester-liposomes had better stability and exhibited less size change than the lactosyl ether-liposomes at 15 or 20 mol% of lactosyl lipids incorporated. This may be attributed to the better structural compatibility of lactosyl ester-lipid with DSPC. The PCS results show that the glycolipid structure and concentrations are major factors that affect vesicle stability, while the pore size of extrusion membranes has no influence.  相似文献   

19.
Here, we examine by atomic force microscopy (AFM) the kinetics and morphology of lipid domain growth during lipid phase separation by rapid thermal cooling of fully mixed two-component supported lipid bilayers. At the undercooled temperatures chosen, symmetric 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-rich domains favored slower reaction-limited growth whereas asymmetric galactosylceramide (GalCer)-rich domains favored faster diffusion-limited growth, indicated by shape factors and kinetic exponents. Because kinetically limited conditions could be accessed, we were able to estimate the activation energy barrier (approximately 16kT) and lateral diffusion coefficient (approximately 0.20 microm2/s) of lipid molecular addition to a growing domain. We discuss these results with respect to transition states, obstructed diffusion, and the necessity for coordinating growth in both leaflets in a symmetric lipid domain.  相似文献   

20.
Interactions between low-molar mass analytes and phospholipid membranes were studied by liposome electrokinetic capillary chromatography (LEKC). The analytes were pesticides, some degradation products, and compounds associated with the manufacture of pesticides. Negatively charged liposome dispersions with different zwitterionic lipids (PC) were applied to the determination of retention factors (k) of 15 charged and uncharged compounds. The liposome dispersions consisted of 80:20 mol% of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/POPS, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS. Retention factors were calculated from the effective electrophoretic mobilities of the analytes under LEKC and CZE conditions and from the effective electrophoretic mobilities of the liposomes, determined by CZE with a polyacrylamide-coated capillary. Determining the liposome mobilities in this way proved to be a good alternative to the conventional method employing a liposome marker compound. The log k values of the analytes for the different liposome dispersed phases were correlated with one another. In addition, correlation curves were determined between log k and calculated octanol-water partition coefficients. The results showed that the zwitterionic phospholipid in the liposome has a major impact on the interactions between the tested compounds and the lipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号