首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spectral Irradiance in Pond Water: Influence of Water Chemistry   总被引:2,自引:0,他引:2  
Knowing the depth of UV penetration in ponds and the chemical variables that control underwater spectral irradiance is a prerequisite to predicting the influence of UV on amphibians and other pond organisms. The present study found that over 99% of UVB (280–315 nm) radiation was attenuated in the top 10–20 cm of ponds sampled on the edge of the Canadian Shield near Peterborough, Ontario. While the principal attenuating substance was, as in lakes, dissolved organic carbon (DOC), neither DOC nor DOC fluorescence were useful predictors of the attenuation coefficients other than the observation that all values of DOC were high and all attenuation coefficients were also high. The lack of a reliable relationship between DOC and attenuation resulted from differences throughout the season in the fraction of the DOC capable of absorbing radiation (chromophores) and the fraction capable of fluorescing (fluorophores). Attenuation was higher than predicted from DOC during springtime when amphibians lay their eggs. Absorbance coefficients measured using a spectrophotometer proved to be reliable predictors of both UVB and UVA attenuation coefficients measured in the ponds with a spectro-radiometer. While DOC provides an effective sun screen against the direct damage of UV radiation, the high attenuation means that the photochemical activity spread over at least 15 m in the ocean is confined to only a few centimeters in ponds.  相似文献   

2.
3.
Atmospheric and in‐water solar radiation, including UVR‐B, UVR‐A and PAR, as well as chromophoric dissolved organic matter absorption [aCDOM(λ)] in surface waters were monthly measured from November 2007 to December 2008 at a coastal station in the Northwestern Mediterranean Sea (Bay of Marseilles, France). Our results showed that the UVR‐B/UVR–A ratio followed the same trend in the atmosphere and at 2 m depth in the water (P < 0.0001) with an increase (eight‐fold higher) during summer. The low diffuse attenuation coefficients for downward irradiance [Kd(λ)] of UVR‐B, UVR‐A and PAR indicated that the waters were highly transparent throughout the year. The relationships between aCDOM(λ) and Kd(λ) in this oligotrophic system suggested that CDOM contributed to UVR attenuation in the UVA domain, but also played a significant role in PAR attenuation. Mean UV doses received in the mixed layer depth were higher by a factor 1.4–33 relative to doses received at fixed depths (5 and 10 m) in summer (stratified period), while the inverse pattern was found in winter (mixing period). This shows the importance of taking into account the vertical mixing in the evaluation of UVR effects on marine organisms.  相似文献   

4.
Hydrogen peroxide (H2O2) is widely distributed in surface waters where the primary photochemical formation pathway involves the interaction between dissolved organic carbon (DOC) and ultraviolet radiation (UVR). In laboratory studies using iron-rich water from Yellow-stone's Chocolate Pots spring, H2O2 formation depended on sample treatment (unfiltered, < 0.2 micron filtered, autoclaved) prior to irradiation, suggesting several formation pathways. Similar H2O2 formation in filtered and unfiltered water indicates that it is primarily soluble material that is responsible for H2O2 formation. H2O2 formation with soluble material probably includes only photochemical reactions with DOC and/or metals. Greater H2O2 formation in unfiltered and filtered water than in autoclaved water suggests that the agent(s) involved in H2O2 formation is (are) not stable at high temperatures and pressures and degrade to nonphotoreactive species. Such unstable agents may include DOC and/or dissolved complexes of iron or other metals. UVR absorbance occurs across the UV spectrum and, though slightly greater in the UVA range (320-400 nm), is similar to that of other surface waters. Increased UVR absorbance after autoclaving suggested degradation or alteration of some components, which in turn affected H2O2 formation. The spectral region used for irradiation affected net formation and yield. H2O2 formation in water irradiated with UVA radiation was 2.5-3 times that formed in water irradiated with UVB radiation (280-320 nm) in experiments using artificial light sources. Apparent quantum yields comparable to those reported by others could not be calculated because the instrumental designs are not the same. However, approximate quantum yields were calculated for these experiments but should be viewed with caution. Quantum yields were higher in these experiments (0.0040 mol H2O2 per mol photon at 310 nm and 0.0012 mol H2O2 per mol photon at 350 nm) than values reported by other researchers (< 0.0007 mol H2O2 per mol photon at 300 nm and < 0.0005 H2O2 per mol photon at 340 nm; [Scully, N. M., D. R. S. Lean, D. J. McQueen and W. J. Cooper (1996) Limnol. Oceanogr. 41, 540-548]). In natural solar source experiments, H2O2 formation was greater in experiments with UVA and photosynthetically active radiation (PAR; 400-700 nm) than with PAR alone or with UVB, UVA and PAR. However, H2O2 capacity (nM H2O2 W-1 h-1 m2) was greatest with UVB radiation and lowest with PAR radiation. Source regions could not be studied separately. Dark decay of H2O2 occurred via two mechanisms. The main mechanism responsible for H2O2 decay involved particulate matter (probably microorganisms), whereas a secondary mechanism involved soluble matter (i.e. DOC, metal ions and other dissolved species involved in Fenton reactions).  相似文献   

5.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

6.
Solar UV radiation (280-400 nm) may affect morphology of cyanobacteria, however, little has been evidenced on this aspect while their physiological responses were examined. We investigated the impacts of solar PAR and UVR on the growth, photosynthetic performance and morphology of the cyanobacterium Anabaena sp. PCC7120 while it was grown under three different solar radiation treatments: exposures to (a) constant low PAR (photosynthetic active radiation, 400-700 nm), (b) natural levels of solar radiation with and (c) without UV radiation (290-400 nm). When the cells were exposed to solar PAR or PAR+UVR, the photochemical efficiency was reduced by about 40% and 90%, respectively, on day one and recovered faster under the treatment without UVR over the following days. Solar UVR inhibited the growth up to 40%, reduced trichome length by up to 49% and depressed the differentiation of heterocysts. Negligible concentrations of UV-absorbing compounds were found even in the presence of UVR. During the first 2 d of exposure to natural levels of PAR, carotenoid concentrations increased but no prolonged increase was evident. Heterocyst formation was enhanced under elevated PAR levels that stimulated quantum yield and growth after an initial inhibition. Higher concentrations of carotenoids and a twofold increase in the carotenoid to chlorophyll a ratio provided protection from the high levels of solar PAR. Under radiation treatments with UVR the relatively greater decrease in chlorophyll a concentrations compared with the increase in carotenoids was responsible for the higher carotenoid: chlorophyll a ratio. Heterocyst formation was disrupted in the presence of solar UVR. However, the longer term impact of heterocyst disruption to the survival of Anabaena sp. requires further study.  相似文献   

7.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

8.
Abstract— The population and photosynthetic responses of a microscopic green alga ( Selenastrum capricornutum ) to realistic levels of UV radiation (UVA and UVB) were assessed in natural lake waters of different dissolved organic carbon (DOC) concentration. Specific growth rates and photosynthetic competence (as reflected by Fv/Fm [measure of maximal quantum efficiency of photosystem II] and t1/2 [estimate of electrons transported to the plastoquinone pool] measured by in vivo variable chlorophyll a fluorescence) were compared between two exposure levels of UVR and two concentrations of DOC (2.5 mg C L−1 7.7 mg C L−1). Exposure periods of 6–9 days (five to nine generations) were used. Exposure to UVA primarily affected the efficiency of photosystem II, as evidenced by significant decreases of Fv/Fm but not growth rates or t1/2 Exposure to UVB, in the presence of UVA, did not cause significant additional decreases of Fv/Fm but did diminish growth rates. In the low DOC water, t1/2 was also diminished, suggesting different proximate sites of action from those for UVA. The high DOC water decreased the effective exposure to both UVA and UVB and diminished the negative impact of UV radiation on the cells, but the apparent protection was not explicable solely by the shading action of the DOC. Control values for Fv/Fm, growth rates and t1/2 were all lower in the high DOC water, suggesting a negative side effect to the apparent protective action of the DOC against UVB.  相似文献   

9.
The impact of photodegradation and mixing processes on the optical properties of dissolved organic matter (DOM) was examined using a distribution of absorption spectral slopes and fluorescence measurements in two Argentine lakes. By examining the variability of the absorption spectral slopes throughout the ultraviolet and visible wavelengths, it was possible to determine which wavelength intervals were most sensitive to dominant loss processes. For DOM photodegradation, results show that increases in the absorption spectral slope between 265 and 305 nm were highly sensitive to increased exposure to solar ultraviolet radiation. A slightly larger wavelength range (265-340 nm) was found to be influenced when both mixing and photodegradation processes were considered, in terms DOM residence time, DOM absorption and UV diffuse attenuation coefficients. This same interval of spectral slopes (265-340 nm) was found to highly correlate with changes in fluorescence emission/excitation in wavelengths that are typically associated with terrestrial humic-like DOM. The identification of specific wavelength intervals, rather than the use of standard wavelength intervals or ratios, improved our ability to identify the dominant dissolved organic matter (humic-like) and major loss mechanisms (photodegradation) in these lakes.  相似文献   

10.
Evaluation of a high exposure solar UV dosimeter for underwater use   总被引:1,自引:0,他引:1  
Solar ultraviolet radiation (UV) is known to have a significant effect upon the marine ecosystem. This has been documented by many previous studies using a variety of measurement methods in aquatic environments such as oceans, streams and lakes. Evidence gathered from these investigations has shown that UVB radiation (280-320 nm) can negatively affect numerous aquatic life forms, while UVA radiation (320-400 nm) can both damage and possibly even repair certain types of underwater life. Chemical dosimeters such as polysulphone have been tested to record underwater UV exposures and in turn quantify the relationship between water column depth and dissolved organic carbon levels to the distribution of biologically damaging UV underwater. However, these studies have only been able to intercept UV exposures over relatively short time intervals. This paper reports on the evaluation of a high exposure UV dosimeter for underwater use. The UV dosimeter was fabricated from poly 2,6-dimethyl-1,4-phenylene oxide (PPO) film. This paper presents the dose response, cosine response, exposure additivity and watermarking effect relating to the PPO dosimeter as measured in a controlled underwater environment and will also detail the overnight dark reaction and UVA and visible radiation response of the PPO dosimeter, which can be used for error correction to improve the reliability of the UV data measured by the PPO dosimeters. These results show that this dosimeter has the potential for long-term underwater UV exposure measurements.  相似文献   

11.
UVR exposure is known to cause developmental defects in a variety of organisms including aquatic species but little is known about the underlying molecular mechanisms. In this work we used zebrafish (Danio rerio) embryos as a model system to characterize the UVR effects on fish species. Larval viability was measured for embryos exposed to several UVR spectral treatments by using a solar simulator lamp and an array of UV cutoff filters under controlled conditions in the laboratory. Survival rate and occurrence of development abnormalities, mainly caudal (posterior) notochord bending/torsion, were seriously affected in UV-exposed larvae reaching values of 53% and 72%, respectively, compared with non-UV-exposed larvae after 6 days postfertilization (dpf). In order to elucidate the molecular mechanisms involved, a matricellular glycoprotein named osteonectin and the expression of a DNA-repair related gene, p53, were studied in relation to UVR exposure. The results indicate that osteonectin and p53 expression were increased under UVR exposure due to wavelengths shorter than 335 nm (i.e. mainly UVB) and 350 nm (i.e. short UVA and UVB), respectively. Furthermore, parallel experiments with microinjections of osteonectin-capped RNA showed that malformations induced by osteonectin overexpression were similar to those observed after a UVR exposure. Consequently this study shows a potential role of osteonectin in morphological deformities induced by solar UV radiation in zebrafish embryos.  相似文献   

12.
The study identifies the relative contribution of various bio-optical factors to the total attenuation of ultraviolet radiation (UVR) wavelengths and photosynthetically active radiation (PAR) in temperate coastal waters of Japan by surveying the physical properties of the water column, UVR and PAR penetration, and the absorption characteristics of dissolved and particulate material. Spectral absorbance properties of pigment (aph), detritus (ad) and chromophoric dissolved organic material (aCDOM) displayed both seasonal and wavelength specific variability. On an annual basis, absorbance by aCDOM was the highest absorbing fraction (47-59%) for the UVR wavelengths measured (305, 320, 340 and 380 nm) but decreased (32%) at 450 nm. Contribution of pigments to total absorbance was highest (40-60%) during a spring bloom for both UVR and PAR. A large variability (C.V. > 42%) for annual average attenuation coefficients (Kd[lambda]) at respective wavelengths observed suggests that the spectral composition of the water column changes throughout the year in this region. A significant relationship was observed between Kd(lambda) and aCDOM at 305, 320, 340 and 380 nm only (P < 0.01) but not for 450 nm (PAR) indicating the role of CDOM in regulating variations in Kd(lambda), particularly in the UVR range. The slope S, obtained from a natural-log plot of the absorption coefficient of CDOM against wavelength, ranged between 0.014 and 0.036 nm-1 annually (average = 0.020 +/- 0.007, C.V. = 35%) and suggests seasonal changes in the origin of CDOM between terrestrial (low S) and biogenous (high S) CDOM.  相似文献   

13.
We adapted and tested a laboratory quantitative filter pad method and field-based microcosm method for estimating diffuse attenuation coefficients (K(d)) of ultraviolet radiation (UVR) for a wide range of stream optical environments (K(d320) = 3-44 m(-1)). Logistical difficulties of direct measurements of UVR attenuation have inhibited widespread monitoring of this important parameter in streams. Suspended sediment concentrations were manipulated in a microcosm, which was used to obtain direct measurements of diffuse attenuation. Dissolved and particulate absorption measurements of samples from the microcosm experiments were used to calibrate the laboratory method. Conditions sampled cover a range of suspended sediment (0-50 mg L(-1)) and dissolved organic carbon concentrations (1-4 mg L(-1)). We evaluated four models for precision and reproducibility in calculating particulate absorption and the optimal model was used in an empirical approach to estimate diffuse attenuation coefficients from total absorption coefficients. We field-tested the laboratory method by comparing laboratory-estimated and field-measured diffuse attenuation coefficients for seven sites on the main stem and 10 tributaries of the Lehigh River, eastern Pennsylvania, USA. The laboratory-based method described here affords widespread application, which will further our understanding of how stream optical environments vary spatially and temporally and consequently influence ecological processes in streams.  相似文献   

14.
Diurnal vertical migration in the water column and the impact of solar radiation on motility were investigated in three marine phytoplankton species: Tetraselmis suecica, Dunaliella salina and Gymnodinium chlorophorum. Cells were exposed to solar radiation either in ultraviolet radiation (UVR, 280-400 nm) transparent Plexiglas tubes (45 cm length, 10 cm diameter) or in quartz tubes under three radiation treatments: PAB (280-700 nm), PA (320-700 nm) and P (400-700 nm). The three species displayed different behavior after exposure to solar radiation. Tetraselmis suecica was insensitive to UVR and under high solar radiation levels, cells accumulated preferentially near the surface. Exposure experiments did not indicate any significant changes in swimming speed nor in the percentage of motile cells after 5 h of exposure. On the other hand, D. salina was sensitive to UV-B displaying a significant decrease in swimming speed and percentage of motile cells after 2-3 h of exposure. Moreover, D. salina cells migrated deep in the water column when irradiance was high. The response of G. chlorophorum was in between that of the other two species tested, with a slight (but significant) decrease in swimming speed and percentage of motile cells in all radiation treatments after 5 h of exposure. While G. chlorophorum cells were more or less homogenously distributed in the water column, a slight (but significant) avoidance response to high radiation was observed at local noon, with cells migrating deep in the water column. Our data clearly indicate that these sub-lethal effects of solar radiation are species-specific and they might have important implications for the aquatic ecosystem.  相似文献   

15.
The spatial distribution of the two-spotted spider mite Tetranychus urticae Koch is biased toward the lower surfaces of leaves as compared with the upper leaf surfaces on their host plants. Because of the deleterious effects of solar ultraviolet (UV) irradiation, we hypothesized T. urticae remains on lower leaf surfaces as an adaptation to avoid solar UV radiation (UVR). We examined the effects of solar UVR components on females and tested whether spatial distribution was associated with solar UVR avoidance. Attenuation of solar UVR using UV opaque film increased fecundity and reduced the movement of females from the upper to the lower leaf surfaces. In contrast, diverting solar UVR to the lower leaf surface using a light reflection sheet caused the mites to move from the lower to the upper leaf surfaces; however, attenuated UV reflection did not, suggesting that they occupy the lower leaf surface to avoid solar UVR. In monochromatic UVR tests, no eggs hatched when placed under 280–300 nm radiation, whereas almost all eggs hatched at 320–360 nm. Adult females, however, did not avoid wavelengths of 280 and 300 nm, but avoided 320–340 nm. We conclude that T. urticae exploit UVA information to avoid ambient UVB radiation.  相似文献   

16.
In this paper we present the results of research on the occurrence, induction and role of photoprotective compounds (PPCs) present in native aquatic yeasts from freshwater Patagonian ecosystems. We focus on the effect of UV radiation (UVR) as a factor that controls the level of photoprotection of yeasts, and explore its potential significance in shaping yeast distributional patterns. The research presented here combines field surveys and laboratory work, including the isolation and culture of native yeasts strains, and laboratory assays under different radiation conditions. The results obtained suggest that yeasts are common dwellers of oligotrophic Patagonian water bodies, and provide the first evidence of the distribution of PPC (carotenoid and mycosporine)-producing yeasts in temperate freshwaters. A greater proportion of carotenogenic yeasts were observed in high-elevation lakes. The yeast strains isolated from these environments were found to produce higher amounts of mycosporines (MYCs), and to present higher tolerance to UVB exposure than those from piedmont lakes. Patagonian yeasts have only one type of MYC, mycosporine-glutaminol-glucoside (myc-glu-glu), which seems common to all other yeasts. By analyzing the production of myc-glu-glu in a large number of yeasts belonging to different taxonomic groups, we propose that this compound may have potential use as a chemotaxonomic marker in yeast systematics. Collectively, our work reveals that in Patagonian freshwater yeasts there is an apparent relationship between the ability to produce PPCs, their tolerance to UV exposure and their success in colonizing habitats highly exposed to UVR.  相似文献   

17.
The tropical and subtropical oceans experience intense incident ultraviolet radiation (280–400 nm) while their water columns are thought to be highly transparent. This combination represents a high potential for harmful effects on organisms, yet only few reports on the UV penetration properties of oligotrophic tropical waters exist. Here, we present the pattern of UV attenuation over a wide latitudinal range of the oligotrophic Red Sea. We recorded spectroradiometer profiles of PAR and UV, together with chlorophyll‐a (Chl‐a) and light absorption by chromophoric dissolved organic matter (CDOM) to determine the contribution of phytoplankton and CDOM toward UV attenuation. Transparency to UV exhibited a distinct latitudinal gradient, with the lowest and highest diffuse attenuation coefficients at 313 nm (Kd (313)) of 0.130 m?1 and 0.357 m?1 observed at the northern coast off Duba, and in the south close to the Farasan islands, respectively. Phytoplankton and CDOM both modulated UV attenuation, but CDOM was found to be the key driver despite the lack of riverine inputs. We confirm that ultraviolet radiation can reach deeper into the Red Sea than previously described, which means its potential to act as a stressor and selective driver for Red Sea organisms may have been underestimated to date.  相似文献   

18.
Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280–400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 μatm; with pHNBS 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315–400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280–315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi.  相似文献   

19.
The association properties of Am with aquatic humic substances in a 0.01M NaClO4 solution at pH 6-8 were studied on the basis of molecular size distribution. Ten humic substances isolated from river water with different water quality (pH 3.9-8.0 and dissolved organic carbon (DOC) concentration of 2-40 mg/l) were used for comparing their effects on the association of Am. The molecular size distribution of Am in the presence of humic substances from an uncolored river water (DOC 2 mg/l) was different from that at the experimental systems using humic substances from brownish and high DOC (14-40 mg/l) river waters.  相似文献   

20.
We examined UV-B radiation flux and its environmental control within and among streams of northern Michigan. UV-B flux was estimated in streams by plastic dosimetry strips, which allow for the simultaneous and repeated in situ measurement of solar radiation. During the summer of 2004, UV-B flux was measured across depth gradients and along longitudinal transects in seven streams, which were chosen to encompass a range of dissolved organic carbon (DOC) concentrations and canopy cover. Attenuation coefficients of UV-B (K(d) (UV-B)) were estimated using plastic dosimeters placed along a depth gradient. K(d UV-B) were positively correlated with DOC concentration and similar to values obtained with laboratory and in situ spectrometry. Along 100 m longitudinal transects, UV-B flux varied along all streams regardless of their canopy cover and DOC concentration. Within-stream fluxes of UV-B were correlated to canopy cover in the only two streams that both had relatively low DOC concentration and variable canopy cover. Large differences were found among streams in the average UV-B flux (corrected for incident solar flux) reaching the dosimeters at 5 cm depth. These among-stream differences were largely accounted for by the stream width, canopy cover, and DOC concentration. Our results illustrate an inherent variability in UV-B flux within and among streams of northern Michigan that is strongly tied to the interactions of DOC concentration, stream size and riparian vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号