首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This work reports how the use of a standard integrated circuit (IC) fabrication process can improve the potential of silicon nitride layers as substrates for microarray technology. It has been shown that chemical mechanical polishing (CMP) substantially improves the fluorescent intensity of positive control gene and test gene microarray spots on both low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films, while maintaining a low fluorescent background. This results in the improved discrimination of low expressing genes. The results for the PECVD silicon nitride, which has been previously reported as unsuitable for microarray spotting, are particularly significant for future devices that hope to incorporate microelectronic control and analysis circuitry, due to the film's use as a final passivating layer.  相似文献   

2.
Microarray-based technology is in need of flexible and cost-effective chemistry for fabrication of oligonucleotide microarrays. We have developed a novel method for the fabrication of oligonucleotide microarrays with unmodified oligonucleotide probes on nanoengineered three-dimensional thin films that are deposited on glass slides by consecutive layer-to-layer adsorption of polyelectrolytes. Unmodified oligonucleotide probes were spotted and immobilized on these multilayered polyelectrolyte thin films (PET) by electrostatic adsorption and entrapment on the porous structure of the PET film. The PET provides higher probe binding capacity and thus higher hybridization signal than that of the traditional two-dimensional aminosilane and poly-L-lysine coated slides. Immobilized probe densities of 3.4 x 10(12)/cm2 were observed for microarray spots on PET with unmodified 50-mer oligonucleotide probes, which is comparable to the immobilized probe densities of alkyamine-modified 50-mer probes end-tethered on an aldehyde-functionalized slide. The study of hybridization efficiency showed that 90% of immobilized probes on PET film are accessible to target DNA to form duplex format in hybridization. The DNA microarray fabricated on PET film has wider dynamic range (about 3 orders of magnitude) and lower detection limit (0.5 nM) than the conventional amino- and aldehyde-functionalized slides. Oligonucleotide microarrays fabricated on these PET-coated slides also had consistent spot morphology. In addition, discrimination of single nucleotide polymorphism of 16S rRNA genes was achieved with the PET-based oligonucleotide microarrays. The PET microarrays constructed by our self-assembly process is cost-effective, versatile, and well suited for immobilizing many types of biological active molecules so that a wide variety of microarray formats can be developed.  相似文献   

3.
DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface-modified slides with aminated DNA probes. Moreover, the TC tag only costs 30% of the commonly used amino group modifications. Using this microarray fabrication technique, a portable cyclic olefin copolymer biochip containing eight individually addressable microfluidic channels was developed and used for rapid and parallel identification of Avian Influenza Virus by DNA hybridization. The one-step, cost-effective DNA-linking method on non-modified polymers significantly simplifies microarray fabrication procedures and permits great flexibility to plastic material selection, thus making it convenient to integrate microarrays into plastic microfluidic systems.  相似文献   

4.
Direct immobilisation of modified DNA oligonucleotides (aminated or thiolated) onto a plastic substrate, poly(methylmethacrylate), (PMMA) is described. Using the methyl esters present on non-modified PMMA, it was possible to establish a covalent bond between the electron donor of a DNA probe and the C terminal ester of the PMMA substrate. Since the procedure consists of a single brief wash in isopropanol or ethanol, the procedure is simple and environmentally friendly. The new immobilization strategy was characterized by analysing DNA microarray performance. The new procedure resulted in probe- and hybridization densities that were greater or equivalent to those obtained with commercially available surfaces and other procedures to immobilize DNA onto PMMA. The described chemistry selectively immobilized the DNA via terminal thiol or amine groups indicating that probe orientation could be controlled. Furthermore, the chemical bond between the immobilized DNA and the PMMA could endure repeated heat cycling with only 50% probe loss after 20 cycles, indicating that the chemistry could be used in integrated PCR/microarray devices.  相似文献   

5.
Hybridization of single-stranded DNA (ssDNA) targets to surface-tethered ssDNA probes was simulated using an advanced coarse-grain model to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more thermodynamically favorable than in the bulk. In addition, the effects of stretching or compressing the probe strand were investigated as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Taken as a whole, the results suggest that current methods to enhance microarray performance by seeking to improve hybridization on the surface may not yield the desired outcomes.  相似文献   

6.
A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs-COOH) for covalent DNA immobilization and enhanced hybridization detection is described. The MWNTs-COOH-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides with the 5'-amino group were covalently bonded to the carboxyl group of carbon nanotubes. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using an electroactive intercalator daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics dramatically increased DNA attachment quantity and complementary DNA detection sensitivity. This is the first application of carbon nanotubes to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

7.
《Electroanalysis》2004,16(19):1628-1631
In this work, we report a simple, rapid and sensitive approach for the electrochemical gold nanoparticle‐based DNA detection with an electrocatalytic silver deposition process. The catalytic and preferential silver electrodeposition on gold nanoparticle surfaces using an indium tin oxide (ITO) electrode at certain potentials, without any chemical pretreatments of the electrode, is demonstrated. More importantly, the application of this methodology for hybridization transduction is explored. The ITO electrode surface is first coated with an electroconductive polymer, poly(2‐aminobenzoic acid), to enable the chemical attachment of avidin molecules for the subsequent probe immobilization. The hybridization of the target with the probe in turn permits the binding of the gold nanoparticle labels to the transducer surface via biotin‐streptavidin interaction. The amount of bound gold labels, which is proportional to the amount of the target, is determined by the electrocatalytic silver deposition process. A significant improvement of the signal‐to‐background ratio is achieved with this scheme compared to the conventional chemical hydroquinone‐based silver deposition process.  相似文献   

8.
Microarray-based technologies have attracted attention in chemical biology by virtue of their miniaturized format, which is well suited to probe ligand-protein interactions or investigate enzymatic activity in complex biological mixtures. A number of research groups have reported the preparation of surfaces on microarrays with specific functional groups to chemoselectively attach small molecules from libraries. We have developed an alternative method whereby libraries are encoded with peptide nucleic acid (PNA), such that libraries which exist as mixtures in solution self-assemble into an organized microarray through hybridization to produce readily available DNA arrays. This allows libraries synthesized by split and mix methods to be decoded in a single step. An asset of this method compared to direct spotting is that libraries can be used in solution for bioassays prior to self-assembly into the microarray format.  相似文献   

9.
Amine-modified oligodeoxynucleotides (AMO) are commonly used probe oligodeoxynucleotides for DNA microarray preparation. Two methods are currently used for AMO preparation—use of amine phosphoramidites protected by acid-labile monomethoxytrityl (MMT) groups or alkali-labile trifluoroacetyl (TFA) groups. Because conventional AMO preparation procedures have defects, for example stringent acidic conditions are required for deprotection of MMT and hydrophobic purification cannot be used for TFA-protected amino groups, conventional preparation of AMO is unlikely to result in the expected outcome. In this paper a method of AMO synthesis using modified H-phosphonate chemistry is suggested. An aliphatic diamine is coupled with a phosphonate group forming a phosphoramidate linkage to the last internucleotide phosphate of oligodeoxynucleotides. In this method dimethoxytrityl (DMT) purification steps are used and stringent acid deprotection is not required to obtain the AMO. Although the method could lead to formation of AMO diastereomers, melting-temperature and CD analysis showed for two AMO that DNA duplex formation was the same as when normal oligodeoxynucleotides were used. Also, when these AMO were used as probes for DNA microarrays the immobilization efficiency was similar to that for AMO probes prepared by conventional means using an amino-modifier unit. The hybridization performance of these AMO was better than for those prepared conventionally. The procedures suggested would be useful for preparation of efficient AMO for fabrication of DNA microarrays and DNA-based nanoparticle systems. Nagendra Kumar Kamisetty and Seung Pil Pack have equally contributed to this work.  相似文献   

10.
One of the main factors that can affect the quality of microarray results is the microarray hybridization specificity. The key factor that affects hybridization specificity is the design of the probes. In this paper, we described a novel oligonucleotide probe containing deoxyinosines aimed at improving DNA hybridization specificity. We compared different probes to determine the distance between deoxyinosine base and SNPs site and the number of deoxyinosine bases. The new probe sequences contained two set of deoxyinosines (each set had two deoxyinosines), in which the interval between SNP site and each set of deoxyinosines was two bases. The new probes could obtain the highest hybridization specificity. The experimental results showed that probes containing deoxyinosines hybridized effectively to the perfectly matched target and improved the hybridization specificity of DNA microarray. By including a simple washing step after hybridization, these probes could distinguish matched targets from single‐base‐mismatched sequences perfectly. For the probes containing deoxyinosines, the fluorescence intensity of a match sequence was more than eight times stronger than that of a mismatch. However, the intensity ratio was only 1.3 times or less for the probes without deoxyinosines. Finally, using hybridization of the PCR product microarrays, we successfully genotyped SNP of 140 samples using these new labeled probes. Our results show that this is a useful new strategy for modifying oligonucleotide probes for use in DNA microarray analysis.  相似文献   

11.
A nonlabeling electrochemical detection method for analyzing the polymerase-chain-reaction-amplified sequence-specific p16 INK4A gene, in which the basis for the covalent immobilization of deoxyribonucleic acid (DNA) probe is described, has been developed. The self-assembly process was based on the covalent coupling of glutaraldehyde (GA) as an arm molecule onto an amino-functional surface. The p16 INK4A gene was used as the model target for the methylation detection of early cancer diagnosis. An amino-modified DNA probe was successfully assembled on the GA-coupling surface through the formation of Schiff base under potential control. The hybridization of amino-modified DNA probes with the target was investigated by means of electrochemical measurements, including cyclic voltammetry and square wave voltammetry. Furthermore, the functions of GA coupling for sequence-specific detection were compared with those obtained based on mercaptopropionic acid. Hybridization experiments indicated that the covalent coupling of GA was suitable for the immobilization of DNA probe and was sensitive to the electrochemical detection of single-base mismatches of label-free DNA targets in hybridization. Moreover, reported probe-modified surfaces exhibited excellent stability, and the hybridization reactions were found to be completely reversible and highly specific for recognition in subsequent hybridization processes. The strategy provided the potential for taking full advantage of existing modified electrode technologies and was verified in microarray technology, which could be applied as a useful and powerful tool in electrochemical biosensor and microarray technology.  相似文献   

12.
Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity.  相似文献   

13.
Summary Thin silicon nitride films (100–210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry, surface profiling measurements and Auger electron spectroscopy (AES) in combination with Ar+ sputtering were used to characterize these films. We have found that the use of (p-p)heights of the Si LVV and N KLL Auger transitions in the first derivative of the energy distribution (dN(E)/dE) leads to an accurate determination of the silicon nitride composition in Auger depth profiles over a wide range of atomic Si/N ratios. Moreover, we have shown that the Si KLL Auger transition, generally considered to be a better probe than the low energy Si LVV Auger transition in determining the chemical composition of silicon nitride layers, leads to deviating results.
Quantitative Auger-Tiefenprofilanalyse von LPCVD- und PECVD-Siliciumnitridfilmen
  相似文献   

14.
15.
A disposable single use polymer microfluidics chip has been developed and manufactured by micro injection molding. The chip has the same outer dimensions as a standard microscope slide (25 x 76 x 1.1 mm) and is designed to be compatible with existing microscope slide handling equipment like microarray scanners. The chip contains an inlet, a 10 microL hybridization chamber capable of holding a 1000 spot array, a waste chamber and a vent to allow air to escape when sample is injected. The hybridization chamber ensures highly homogeneous hybridization conditions across the microarray. We describe the use of this chip in a flexible setup with fluorescence based detection, temperature control and liquid handling by computer controlled syringe pumps. The chip and the setup presented in this article provide a powerful tool for highly parallel studies of kinetics and thermodynamics of duplex formation in DNA microarrays. The experimental setup presented in this article enables the on-chip microarray to be hybridized and monitored at several different stringency conditions during a single assay. The performance of the chip and the setup is demonstrated by on-line measurements of a hybridization of a DNA target solution to a microarray. A presented numerical model indicates that the hybridization process in microfluidic hybridization assays is diffusion limited, due to the low values of the diffusion coefficients D of the DNA and RNA molecules involved.  相似文献   

16.
This paper describes the preparation and surface characterization of maleimide-activated silicone elastomer (PDMS(MCC)) followed by covalent functionalization using thiol-terminated DNA sequences (primary oligo). The stability of this attachment chemistry was demonstrated by the retention of the primary oligo through the process of hybridization with a labeled complementary DNA sequence. In these studies, the hybridized labeled DNA oligomers were detected using confocal fluorescence microscopy. We have employed a vapor deposition technique in which a plasma-treated silicone elastomer (PDMS(OH)) was exposed to vapors of 3-(aminopropyl)triethoxysilane (APTS) under vacuum, to yield the amine-functionalized silicone elastomer (PDMS(NH)(2)). PDMS(NH)(2) was further coupled with a heterofunctional cross-linker, sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate to obtain PDMS(MCC). The surface functionalities of the elastomers were characterized using contact angle measurements and X-ray photoelectron spectroscopy. Surface-modified silicone elastomers appear to be promising substrates for use as substrates for disposable microarrays.  相似文献   

17.
Single-nucleotide polymorphisms (SNPs) are the most common form of DNA sequence variation. There is a strong interest from both academy and industry to develop rapid, sensitive and cost effective methods for SNP detection. Here we report a novel structural concept for DNA detection based on fluorescence dequenching upon hybridization. The so-called "twin probe" consists of a central fluorene derivative as fluorophore to which two identical oligonucleotides are covalently attached. This probe architecture is applied in homogeneous hybridization assays with subsequent fluorescence spectroscopic analysis. The bioorganic hybrid structure is well suited for sequence specific DNA detection and even SNPs are identified with high efficiency. Additionally, the photophysical properties of the twin probe were investigated. The covalent attachment of two single stranded oligonucleotides leads to strong quenching of the central fluorescence dye induced by the nucleobases. The twin probe is characterized by supramolecular aggregate formation accompanied by red-shifted emission and broad fluorescence spectra.  相似文献   

18.
19.
The fabrication of microarrays containing PCR-amplified genomic DNA extracts from mice tumors on a Zetaprobe membrane using a modified thermal ink-jet printer is described. A simple and cost-effective procedure for the fabrication of microarrays containing biological samples using a modified bubble-jet printing system is presented. Because of their mass-produced design, ink-jet printers are a much cheaper alternative to conventional spotting techniques. The usefulness of the biochip microarray platform is illustrated by the detection of human fragile histidine triad (FHIT), a tumor suppressor gene. Subcutaneous carcinomas were induced with MKN/FHIT and MKN/E4 cell lines in immunodeficient mice. Several weeks into their development, the tumors from both groups of mice were removed and subjected to DNA extraction by lysis of tissue samples. The extracted DNA samples were amplified by PCR (30 cycles) using the primers corresponding to nucleotides 2 to 18 of the FHIT sequence. The resulting solution was transferred to the individual reservoirs of a three-color cartridge from a conventional thermal ink-jet printer (HP 694C), and arrays were printed on to a Zetaprobe membrane. After spotting, these membranes were used in a hybridization assay, using fluorescent probes, and detected with a biochip.  相似文献   

20.
硅基芯片表面化学性质对蛋白质固定化的影响   总被引:1,自引:0,他引:1  
制备蛋白质芯片的关键在于将蛋白质固定到芯片表面并保持其生物学活性.本实验中,我们分别采用物理吸附、直接化学固定、加入间隔臂化学固定和生物亲和作用固定的方法将癌胚抗原(CEA)抗体固定到硅基芯片的二氧化硅表面.基于抗原-抗体的特异性相互作用,利用双抗体夹心酶联免疫法(ELISA)评价各种方法固定抗体的效果.实验结果表明,在修饰有氨基的表面采用戊二醛作为偶联试剂固定CEA抗体具有最高的偶联效率,引入多聚赖氨酸(poly-L-lysine)作为间隔臂可以显著增强固定效果,并可进一步降低非特异性吸附.而利用生物亲和作用固定CEA抗体也可获得较好的固定效果,但是非特异性吸附较严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号