首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
分别以直接热聚合法和水热合成法制备得到二维硼掺杂氮化碳(BCN)和四氧化三锡(Sn3O4)半导体材料, 采用超声复合和煅烧复合两种方法构建了BCN/Sn3O4复合材料. 利用 X 射线衍射(XRD)、 紫外-可见漫反射(UV-Vis)光谱、 透射电子显微镜(TEM)等手段对所制备样品进行了表征和分析, 探讨了不同复合方法对催化剂微观结构及光电性质的影响; 以可见光下光解水制氢和活化氧制过氧化氢为模型反应考察了催化剂的光催化性能. 结果表明, BCN与Sn3O4能够形成二维面-面复合结构, 相比于超声复合法, 直接煅烧法更有利于有效界面的形成, 使得界面间产生Sn3O4到BCN的电荷迁移, 增强了BCN表面电荷密度, 并使复合材料具有更加优化的光电响应和光催化还原活性, 其中煅烧法得到的复合样品BCN/Sn3O4-3C(Sn3O4与BCN质量比为3%)表现出显著增强的光解水制氢及活化氧制过氧化氢的活性.  相似文献   

2.
以合成的g-C3N4纳米片和Ag/TiO2空心微球为原料,采用机械搅拌的方法构筑了g-C3N4/Ag/TiO2三元复合光催化剂。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射(UV-Vis DRS)和光致发光光谱(PL)对g-C3N4/Ag/TiO2进行了表征。研究表明,g-C3N4/Ag/TiO2是由Ag/TiO2微球和g-C3N4纳米片复合而成的。与TiO2相比,其可见光响应范围延长,光生载流子的分离速率加快。在室温下,用降解罗丹明B的反应考察了g-C3N4/Ag/TiO2的可见光催化活性。研究表明,光照180 min时,g-C3N4(0.5%)/Ag/TiO2显示了最高的光催化活性(91.9%),分别是TiO2和Ag/TiO2的7.5和1.8倍。光催化活性的提高与合理的异质结构建和Ag的导电性能有关。  相似文献   

3.
使用尿素、 红磷和氯化镍为原料, 通过一种简单的焙烧方法合成了Ni5P4/g-C3N4光催化剂. 该催化剂形成的异质结可以降低界面电阻, 有效抑制光生电子-空穴对复合率. 以罗丹明B模拟污染物进行降解测试, 发现3NPC的反应速率常数最高, 几乎是g-C3N4的7倍, 并具有最高的光催化产氢能力, 制氢速率高达1013.88 μmol·g-1·h-1, 明显高于g-C3N4(664.38 μmol·g-1·h-1).  相似文献   

4.
通过水热反应合成了Sb2WO6改性的g-C3N4复合材料(Sb2WO6 /g-C3N4). 通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 紫外-可见漫散射反射光谱(UV-Vis DRS)和光致发光光谱(PL)等表征了样品的性质. 结果表明, Sb2WO6在g-C3N4的表面上生长, 并且复合材料光吸收能力有一定的增强, 光生电子-空穴的重组率降低. 通过罗丹明B(RhB)的光降解评价了Sb2WO6/g-C3N4复合材料的光催化性能. 结果表明, 模拟日光下Sb2WO6质量分数为10%的Sb2WO6/g-C3N4复合材料在60 min内对RhB的降解率为99.3%, 高于纯g-C3N4和Sb2WO6. Sb2WO6/g-C3N4复合材料的这种高度增强的光催化活性主要归因于强的界面相互作用促进了光生电子-空穴分离和迁移. 添加自由基清除剂的实验结果表明, ·O2-和h+是光催化反应中的主要活性物质. Sb2WO6/g-C3N4复合材料在几个反应周期内表现出优异的稳定性. 根据实验结果提出了一种可能的Z型光催化机理.  相似文献   

5.
一步法合成g-C3N4纳米片用作苯酚可见光降解高效催化剂   总被引:2,自引:0,他引:2  
石墨相氮化碳(g-C3N4)是一种在室温条件下最稳定的氮化碳.同时g-C3N4的带隙为2.7 eV,可以利用可见光催化很多反应,例如光解水、CO2还原、有机污染物降解和有机物合成.但普通体相g-C3N4的光催化性能不尽如人意,主要是由于普通体相材料的载流子复合效率高,可见光(<450 nm)利用率低且比表面积小.众所周知,半导体的光催化性能与材料表面状态密切相关,因此可以控制合成条件来制备有利于光催化形貌的g-C3N4材料.普通体相g-C3N4材料的比表面积较小,约为10 m2/g,导致传质作用较差,光生电子-空穴复合严重,因此制备高比表面积的g-C3N4材料是目前研究的热点.我们发现在550℃下将三聚氰胺和三聚氰酸一起煅烧可以一步热合成g-C3N4纳米片,合成温度较低,对材料带隙影响小,同时可以提高材料比表面积,从而极大地提高了材料的光降解苯酚性能.XRD测试发现,随着前驱体中三聚氰酸比例增加,材料的主峰从27.38°显著偏移到27.72°.这表明三嗪环面内相连构成CN平面,同时CN层也会有堆叠最终形成g-C3N4材料.通过BET测试,g-C3N4纳米片的比表面积为103.24 m2/g.采用AFM分析得到g-C3N4纳米片的厚度为3.07 nm.研究了该g-C3N4纳米片的光降解性能,结果显示,在可见光照射30 min后,使用这种g-C3N4纳米片作为催化剂的条件下,苯酚降解率达到最优的81%.在5次循环利用后,g-C3N4(1:9)的降解率还能保持在80%以上,说明材料有良好的循环稳定性.这主要得益于材料的纳米片结构,在对苯酚吸附时不会有很复杂的吸附与脱附过程.同时纳米片结构可为有机污染物的吸附和原位降解提供传质通道.光反应体系中的产物由HPLC检测,分析苯酚的降解产物及产物的产量可以大致推测苯酚可能的降解历程.在三聚氰酸作用下,CN聚合层弯曲,减少了CN层之间的相互结合,同时不会对材料的带隙产生影响.同时整个合成过程无需引发剂,也不会导致CN层的基本单元和连接方式发生改变,同时由于二维片层结构,提高了材料的电荷分离效率.通过苯酚的降解实验得知三聚氰胺与三聚氰酸的比例为1:9,在550℃下煅烧得到的g-C3N4纳米片的光降解性能最优,同时具有很好的催化稳定性.  相似文献   

6.
导电聚合物型光催化材料g-C3N4有着独特的电子结构、稳定的化学性能和显著的可见光催化活性。基于g-C3N4的Z型光催化体系(Z-g-C3N4)的催化效率高、电子-空穴复合率低而备受关注,在光催化领域展现出了巨大的应用潜力。本文阐述了Z-g-C3N4型光催化反应体系的作用机理,综述了Z-g-C3N4在光催化领域的研究进展,介绍了Z-g-C3N4在产氢、转化CO2、降解有机物等光催化领域的应用,讨论了pH值、导电介质等因素对Z-g-C3N4光催化性能的影响。最后指出了Z-g-C3N4光催化体系在研究过程中面临的问题和研究方向。  相似文献   

7.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

8.
何平  陈勇  傅文甫 《分子催化》2016,30(3):269-275
利用荧光素作为光敏剂,三乙醇胺(TEOA)作为牺牲剂,在大于420 nm的LED灯照射下,3价铁离子光催化还原生成零价铁纳米粒子分散在二维g-C3N4片上,并伴随着光催化分解水产氢,催化产氢效率达到5.97 μmol·h-1.光催化反应48 h后,催化活性没有明显降低.  相似文献   

9.
黄艳  傅敏  贺涛 《物理化学学报》2015,31(6):1145-1152
用简单的超声分散法合成了具有可见光响应的类石墨氮化碳(g-C3N4)/BiVO4复合光催化剂. 采用X射线衍射(XRD), X射线光电子能谱(XPS), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 紫外-可见(UV-Vis)分光光谱, 傅里叶红外变换(FTIR)光谱, 荧光发射谱(PL)和光电流响应等技术对所制备催化剂进行相关表征. 通过可见光下(λ> 420 nm)光催化还原CO2的性能来评价样品的光催化活性, 发现不同复合比的催化剂中, 含40% (w) g-C3N4的复合催化剂表现出最高的光催化活性, 其催化活性分别为纯g-C3N4纳米片和纯BiVO4的催化活性的2倍和4倍.光催化活性增加的主要原因是g-C3N4和BiVO4之间形成了异质结, 且相互间能级匹配, 有利于光生电子和空穴的分离.  相似文献   

10.
g-C3N4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C3N4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C3N4光催化性能较低,其原因可归纳为:(1)g-C3N4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C3N4的量子效率较低;(2)材料在合成过程中易于结块,使g-C3N4的比表面积远小于理论值,严重削弱了g-C3N4光催化材料的制氢性能.目前已有很多关于g-C3N4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C3N4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C3N4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C3N4表面均匀分布的含氧官能团等和Ni2+结合,再原位与S2?反应,从而在g-C3N4上负载耦合紧密的NiS2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS2/g-C3N4光催化剂.NiS2助剂在温和的反应条件下与g-C3N4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C3N4;(2)添加Ni(NO3)2前驱体后,Ni2+离子由于静电作用紧密吸附在g-C3N4表面;(3)在80oC加入硫代乙酰胺(TAA),可在g-C3N4的表面紧密和均匀形成助剂NiS2.表征结果证实成功制备NiS2纳米粒子修饰的g-C3N4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h?1 g?1),明显高于纯g-C3N4.此外,对NiS2/g-C3N4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS2促进了物质表面快速转移光生电子,使g-C3N4光生电荷有效分离.基于NiS2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

11.
采用一种原位合成工艺制备了具有类石榴结构的金属铋(Bi)单质修饰的g-C3N4复合材料(Bi-CN),并用于可见光氧化NO反应中.金属Bi单质镶嵌在CN层间形成的复合物,由于金属Bi单质显著的表面等离子体共振(SPR)作用可将光吸收范围由紫外光延展至近红外,极大地提高了复合物的光吸收.此外,由于Bi单质存在于复合物界面可产生内建莫特-肖特基效应,从而加快光生载流子的分离与转移.由此,Bi-CN复合物光催化剂展现出超强的光催化去除NO性能.我们提出了类石榴结构的形成以及相应的Bi-CN复合物光催化活性的提高机理.这不仅为高效的金属铋单质改性的g-C3N4基光催化剂提供了一种新的设计方案,也对g-C3N4基光催化的机制理解提出了新的见解.通过X射线衍射、红外光谱和X射线光电子能谱结果发现Bi是以金属单质的形式存在于Bi-CN复合物中,这得益于我们采用了二水合铋酸钠(NaBiO3·2H2O)作为铋前驱体,从而成功避免了氧化态铋的形成.Bi-CN复合物中金属铋单质的存在有诸多优点.首先,金属铋单质具有显著的表面SPR效应,它的引入可大大提高复合物的光吸收能力和太阳光利用率.有研究表明,直径为150–200 nm的铋球能够在紫外-可见漫反射图谱(UV-vis)在λ=500 nm处呈现出典型的SPR峰,但本样品在λ=200–800 nm区间内并未发现该SPR峰.由于铋单质的共振受限于其尺寸大小、颗粒形状和构造环境.本文中球形铋单质的直径约为1μm,其可能发生共振效应的峰位置应超过800 nm,因此未发现相应的SPR峰.其次,金属铋单质分散在CN层表面上构建的肖特基垫垒能够高效地阻止光生电子与空穴的复合,促进了光生载流子的分离与转移,从而提高光氧化NO进程.再者,金属铋单质的介入成功构造了Bi-CN异质结,在可见光照射下NO氧化反应中,Bi-CN复合物活性显著高于CN(22.2%)、CN-EG(36.4%)和Bi(14.1%),其中以10%Bi-CN活性最佳,NO去除率到70.4%,远远超过K插层的g-C3N4、Ag掺杂的g-C3N4和氧化石墨烯修饰的g-C3N4.当复合物中金属铋单质含量超过10%时,其活性明显下降.这是因为大量的金属铋单质积聚在Bi-CN复合物表面上而造成物理堵塞,妨碍了CN吸收可见光,从而降低了其可见光吸收能力;同时导致只会吸收更多的紫外光(λ<280 nm)而不是可见光,因而其可见光催化氧化NO能力下降.  相似文献   

12.
Nanoscaled palladium particles supported on graphitic carbon nitride (Pd0/g-C3N4) is prepared to improve the oxygen transfer in Wacker oxidation via chemical reduction method. From the analysis of FT-IR, XRD, SEM, TEM, XPS and ICP, Pd0 particles are firmly combined with g-C3N4 layers, and sub-surface ones occupy most of the components. It is worth mentioning that graphene oxide (GO), which is completely recyclable without further pollution, can be used as a ‘solid weak acid’ taking the place of H2SO4 and CF3COOH. Under the optimization conditions, as many as 46 kinds of olefins are transferred into corresponding products with satisfactory yields, and o-methyl styrene gets the highest yield of 94%. After five times of recycling experiment, the yield of acetophenone only decreases by about 7.0% in the uniform reaction process. In virtue of former research results and molecular electrostatic potential, a possible mechanism is put forward to explain the catalytic process.  相似文献   

13.
高活性低成本氧还原反应(ORR)电催化剂是燃料电池和金属/空气电池等可再生能源技术的关键组成部分.在离子液体[(C16mim)2CuCl4]和质子化的石墨化氮化碳(g-CN)的存在下,采用简易的水热反应制备了Cu/g-CN电催化剂用于ORR.与纯的g-CN相比,所制Cu/g-CN表现出高的ORR催化活性:起始电势正移99 mV,为2倍动力学电流密度.另外,Cu/g-CN还表现出比商用Pt/C(HiSPECTM 3000,20%)催化剂更好的稳定性和甲醇容忍性.因此,该催化剂作为廉价的高效ORR电催化剂有望应用于燃料电池中.  相似文献   

14.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

15.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

16.
Here for the first time, we present a novel electrochemiluminescence (ECL) sensor based on graphitic carbon nitride/graphene oxide (g-C3N4/GO) hybrid for the ultrasensitive detection of Cu2+, which is a common pollutant in environmental system. The g-C3N4/GO shows stable ECL signal in the presence of the self-produced coreactant from oxygen reduction, and the ECL signal could be effectively quenched by Cu2+, the possible ECL detection mechanism has been proposed in detail. GO can not only significantly enhance the cathodic ECL signal of g-C3N4 (∼3.8 times), but also serve as immobilization platform for g-C3N4. After optimization of experimental conditions, the proposed protocol can offer an ultrasensitive, highly selective and recyclable method for the detection of Cu2+ with a low detection limit of 1.0 × 10−11 M and a wide linear range from 1.0 × 10−11 to 1.0 × 10−7 M. Moreover, the practicability of the ECL sensor in real wastewater samples is also tested, showing that the proposed ECL sensor could be a promising alternative method for the emergency and routine monitoring of Cu2+ in real sample.  相似文献   

17.
In this work, graphitic carbon nitride (GCN) photocatalyst-incorporated polyacrylonitrile (PAN) nanofibres (GCN/PAN nanofibres) were successfully prepared using electrospinning technique. The physicochemical properties of the fabricated GCN/PAN nanofibres were analysed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analyser, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV–vis–NIR spectroscopy. The photocatalytic degradation by GCN/PAN nanofibres exhibited 90.2% photodegradation of partially hydrolysed polyacrylonitrile (HPAM) after 180 min under UV light irradiation in a suspension photocatalytic reactor. The results suggest that the photodegradation of HPAM contaminant by GCN/PAN nanofibres was due to the synergetic effects of HPAM adsorption by the PAN nanofibres and HPAM photodegradation by the GCN. This study provides an insight into the removal of HPAM from polymer-flooding produced water (PFPW) through photocatalytic degradation of liquid-permeable self-supporting nanofibre mats as a potentially promising material to be used in industrial applications.  相似文献   

18.
半导体光催化是一种理想的太阳能化学转化绿色技术,可以实现水分解制氢和CO2光还原制备碳氢化合物燃料.氧化锌 (ZnO) 作为一种直接带隙半导体材料,一方面具有性能优异、价格低廉、易制备等优点; 另一方面因光腐蚀而不稳定,大大限制了该材料的实际应用.本文提出了一种简单易行的类石墨碳修饰方法,可以有效提高 ZnO 用于CO2光还原的光催化活性和稳定性.首先采用水热法在金属锌片基底上生长 ZnO 纳米棒阵列 (ZnO-NRA),然后通过葡萄糖水热法进行不同含量的类石墨碳 (C-x) 修饰,形成 ZnO-NRA/C-x 纳米复合结构,同步实现碳包覆和碳掺杂.X 射线衍射结果表明,ZnO 纳米棒及ZnO-NRA/C-x 纳米复合结构都具有良好的纤锌矿型 (Wurtzite) 结构; 而拉曼散射则清楚地证实了类石墨碳的存在.扫描电子显微观察显示,生长的 ZnO 纳米棒长度大约 2-5 μm,直径为 400-700 nm,沿方向[0001]生长,端部由六个规则的 (103)晶面组成,进一步直观佐证了 ZnO 的典型纤锌矿型结构特征.透射电子显微分析结果表明,ZnO-NRA/C-x 纳米复合结构中类石墨碳包覆层厚度大约为 8 nm.ZnO-NRA/C-x 纳米复合结构的 X 射线光电子谱分析结果验证了 C-C,C-O 和 C=O键的存在与碳的包覆层相对应; 而 C-O-Zn键的出现则是由于碳在 ZnO 中掺杂所引起.从紫外-可见吸收谱上可观察到ZnO 的典型吸收带边位置约为 385 nm,而碳的包覆和掺杂导致 ZnO-NRA/C-x 纳米复合结构的吸收带边发生红移,并且吸收背底明显提高.电化学阻抗谱测试结果清楚地显示,ZnO-NRA/C-x 纳米复合结构比单纯 ZnO-NRA 的电化学阻抗明显降低,说明类石墨碳包覆层大幅度提高了电导性能,从而有利于光生载流子的分离和传输.荧光分析结果也表明,与单纯的 ZnO-NRA 相比,ZnO-NRA/C-x 纳米复合结构的荧光强度大幅度下降,进一步证实了 ZnO-NRA/C-x 纳米复合结构比单纯的 ZnO-NRA更有利于光生载流子的分离和传输.光电化学测试结果表明,ZnO-NRA/C-x 纳米复合结构的瞬态光电流 4 倍于单纯的ZnO-NRA,而 CO2 光还原性能测试也得到一致的结果.长时间多循环 CO2 光还原实验证实,ZnO-NRA/C-x 纳米复合结构具有稳定的光催化活性和极好的光稳定性.综上,我们利用一种简单易行的水热法进行类石墨碳修饰,成功开发了 ZnO-NRA/C-x 纳米复合结构,该结构因其优异的光生电子和空穴的分离和迁移性能,从而具有显著提升的CO2光还原活性和光稳定性.本工作证明,类石墨碳修饰是一种可以广泛借鉴的有效提升半导体材料光催化活性和光稳定性的可行方法.  相似文献   

19.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

20.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号