首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 e V)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常,Bi2O3具有α,β,γ,δ,ε和ω等六种晶型,其中,α,β和δ-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快,Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与α-Bi2O3直接作用原位形成的α-Bi2O3与铋的卤氧化合物Bi OX(X=Cl,Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的β-Bi2O3(带宽约2.3 e V)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理β-Bi2O3形成β-Bi2O3/Bi OI异质结.该异质结表现较纯β-Bi2O3和Bi OI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了β-Bi2O3/Bi OI异质结,并提出其高催化活性的机理.XRD结果显示,用HI原位处理β-Bi2O3可形成Bi OI相,并且随着HI使用量增加,混合物中的Bi OI相逐渐增多.HRTEM结果进一步表明,在混合物中的β-Bi2O3和Bi OI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和αhv=A(hv–Eg)n/2等公式,计算出了β-Bi2O3和Bi OI带隙分别为2.28和1.77 e V,以及两种半导体的导带和价带位置.β-Bi2O3的导带和价带位置分别为0.31和2.59 e V,而Bi OI的导带和价带位置分别为0.56和2.33 e V.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而,XPS测定结果显示,β-Bi2O3和Bi OI相互接触形成异质结后,β-Bi2O3相的电子向Bi OI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.β-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而Bi OI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了β-Bi2O3/Bi OI异质结高催化活性的机理.当β-Bi2O3与Bi OI形成异质结时,由于β-Bi2O3的费米能级较Bi OI的高,因而电子从β-Bi2O3转向Bi OI,直至新的费米能级形成.因此电子在两相之间移动导致了β-Bi2O3能带结构整体下移,以及Bi OI能带结构整体上移,使得新形成的Bi OI导带和价带位置高于β-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至β-Bi2O3的导带,而空穴会移至Bi OI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性.PL测试也证实了β-Bi2O3/Bi OI异质结具有更长的光生电子-空穴寿命.  相似文献   

2.
通过研磨-焙烧法制备了YFeO3/TiO2异质结材料,考察了焙烧温度和组分质量含量变化对合成异质结材料的影响;进行了X射线衍射(XRD)、傅里叶红外(FRIR)、紫外-可见漫反射(UV-vis/DRS)、光电子能谱(XPS)等表征并测试了不同样品光催化降解橙黄Ⅱ的活性.结果表明,YFeO3/TiO2复合氧化物不仅具有明显的可见光光响应,而且表现出比单组分相对较高的光催化降解活性.最佳的复合样品为600℃焙烧下,w(TiO2)=0.9的复合样品.复合材料光催化活性的提高可归因于p-YFeO3与n-TiO2间存在的p-n结.  相似文献   

3.
采用先后沉淀法制备了Ag2CO3/Bi2O2CO3(BOC)复合光催化剂. 扫描电子显微镜和透射电子显微镜表征结果表明, 尺寸为8.0~18.5 nm的Ag2CO3颗粒均匀分散于BOC纳米片表面. 两种半导体之间所形成的良好p-n异质界面效应拓宽了BOC的光吸收范围, 并有效促进了光生电子-空穴对的分离. Ag2CO3/BOC复合光催化剂的催化活性明显提高, 其中Ag2CO3含量(质量分数)为0.62%时活性最佳, 降解罗丹明B的速率常数为纯BOC的2.8倍. 结合催化过程中的活性物种研究和两种半导体的相对能带位置, 提出了p-n异质界面空间电荷层的形成以及载流子分离和迁移机制.  相似文献   

4.
光催化技术作为一种绿色的环境修复方法而备受关注,它直接利用太阳光作为能源,可有效地降解有机污染物.铋系化合物具有化学稳定性强、抑制光腐蚀、无毒和来源广泛等优点,被认为是一种环境友好的光催化剂,广泛用于降解染料、苯酚和其他有机污染物.BiOCl具有独特的内部结构,可形成内电场促进电子和空穴的移动,抑制其复合.但是BiOCl本身带隙能过大,只能被紫外光激发,对光的利用率较低,限制了其在环境治理中的应用.近两年来发现,m-Bi2O4带隙能小,可吸收大波长的可见光,催化性能好.为充分发挥m-Bi2O4的优异性质,改善BiOCl的性能,本文将BiOCl与m-Bi2O4复合制得新型催化剂,降低催化剂的带隙能,增强对光的吸收,提高量子效率,促进光生载流子的分离,抑制电子-空穴复合,从而提高催化剂性能,加速降解反应进程.本文通过离子刻蚀法制备具有p-n异质结的m-Bi2O4/BiOCl复合催化剂,通过调节HCl的加入量制得不同比例的催化剂,并考察了其在可见光下催化降解MO(甲基橙)的性能.结果表明,m-Bi2O4/BiOCl复合催化剂在可见光下表现出优异的光催化降解MO和四环素的性能,反应10内min可降解95%的MO,反应150 min内四环素的降解率为85.5%;该复合催化剂对MO和四环素的光降解效率分别是纯BiOCl的52.3和4.9倍.活性自由基捕获实验表明,空穴在光催化降解过程中起最主要的作用,其次是超氧自由基,羟基自由基对降解反应也起到一定的作用.采用XRD,SEM,EDS,TEM,SAED,FT-IR,Raman,XPS,BET,UV-vis和光电流等表征方法分析了催化剂的结构、形貌、化学组成、元素价态、孔结构、带隙能、光学性质和载流子复合效率.结果表明,与BiOCl的斜四方体相比,m-Bi2O4/BiOCl复合催化剂呈现纳米片状结构,氯离子进入晶格的内部,颜色也由BiOCl原来的深褐色变为黄色.m-Bi2O4/BiOCl为介孔结构,比表面积为112.90 m2/g,其吸收波长红移,由紫外光扩展至可见光区域,带隙能也由3.2降低为1.87 eV,能带弯曲形成p-n异质结,提高了电子-空穴的转移效率,抑制其复合;m-Bi2O4/BiOCl的光电流密度高于m-Bi2O4和BiOCl,电子-空穴的分离效率更高,因而其催化性能更优越.  相似文献   

5.
异质型BiOI/NaBiO_3光催化剂的合成及其光催化性能   总被引:2,自引:0,他引:2  
根据表面化学蚀刻原理采用加热冷凝回流的方法制备了一系列组成的异质结构BiOI/NaBiO3光催化剂。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和紫外-可见漫反射光谱(UV-Vis-DRS)等技术对其晶相结构、微观形貌和光吸收性能进行了表征。光催化实验表明,BiOI/NaBiO3在可见光下可以有效降解罗丹明B(RhB),当BiOI与NaBiO3的物质的量分数为一定值时,异质结构的光催化剂明显优于单一组分的光催化活性。通过加入不同的牺牲剂及荧光实验结果推测了该异质结构材料的光催化机理,并且分析了其光生载流子的传输方向及光催化过程的活性物种。研究表明,BiOI/NaBiO3的催化活性增强主要归结为两者之间形成了有效的异质结构,其内建电场能够促进光生载流子的分离,同时光生空穴h+在光催化降解过程中是主要的活性物种。  相似文献   

6.
由于人类面临的能源危机与环境污染问题日益严重,光催化技术作为最有可能解决这两大问题的技术而备受关注。其中,光催化剂是光催化技术的核心。开发具有宽光谱响应、高载流子分离效率的光催化剂既是研究热点也是难点。铋系光催化剂具有较强的可见光吸收能力。但是,提高铋系光催化剂对入射光的吸收效率、降低光生载流子复合效率仍是提高其光催化活性的关键。目前主要通过以下策略来解决这些问题:(1)贵金属负载,(2)半导体复合,(3)金属/非金属掺杂,(4)碳材料修饰,(5)铋金属负载等。最后还简要探讨了具有异质结的铋系光催化剂的发展趋势及其潜在应用。
  采用贵金属负载于铋系光催化剂(构建肖特基结),可以通过等离子体共振效应拓宽铋系光催化剂的光吸收范围,同时贵金属还能有效转移半导体上的光生电子,促进光生载流子的有效分离。但是,采用贵金属负载存在昂贵、容易发生团聚等不足。通过半导体之间构建紧密异质结,不仅可以调节所制备复合催化剂的能带结构,满足不同光催化反应的要求,而且由于内电场的存在可以促进光生载流子定向转移,从而提高光生载流子的分离效率。除此之外,通过杂原子掺杂可以在原子层面上构建异质结结构,也能有效抑制光生载流子的复合。近年来,通过与具有较好导电性能的碳材料复合,可以快速转移铋系半导体上产生的光子,提高光催化剂的活性和量子效率。铋纳米颗粒具有与贵金属类似的性能,通过采用铋金属对铋系半导体进行负载也可以发生等离子体共振效应,从而可以提高铋系半导体的活性。最后,作者展望了铋系半导体复合光催化剂发展的三个重要方向:(1)创制非化学计量比的铋系半导体复合光催化材料;(2)通过与还原能力更强的半导体构建复合光催化材料,实现光催化 CO2还原制备有机物和光催化全解水的应用中去;(3)充分利用铋系半导体化合物具有较强氧化能力的优点,将其应用于光催化有机物合成中,比如光催化甲苯类有机物选择性氧化等。  相似文献   

7.
采用简单混合法制备了一系列Bi2O3/Bi2WO6复合光催化剂. 在紫外光降解水中苯酚的过程中, Bi2O3/Bi2WO6的光催化活性随Bi2O3含量的增加呈现先增大后减小的趋势. 当Bi2O3最佳负载量等于12.5% (质量分数, w)时, 该复合光催化剂的活性大约是单一Bi2WO6的4 倍. 固体样品表征表明, Bi2O3主要以β-Bi2O3存在, 复合光催化剂是Bi2O3和Bi2WO6的简单混合物. 此外, 在电催化氧化水的过程中, β-Bi2O3/Bi2WO6薄膜电极的光电流远大于β-Bi2O3和Bi2WO6薄膜电极的光电流之和. Bi2O3对Bi2WO6光催化的促进作用是由于前者接受后者的光生空穴, 提高Bi2WO6光生载流子的分离效率, 从而加快了O2的还原和苯酚的降解.  相似文献   

8.
以硫代乙酰胺为硫源,采用水热阴离子转移法,制备由纳米片组装的花球状Bi2S3/BiOI复合光催化剂。以气相甲醛作为模型污染物,在检测舱中考察了复合催化剂对甲醛的去除作用。结果表明,具有异质结结构的Bi2S3/BiOI复合光催化剂具有较高的光催化活性,能在可见光下去除空气中的甲醛,并且具有良好的循环使用稳定性。  相似文献   

9.
由于日益严重的环境和能源危机,可见光催化剂的开发已成为当今最具挑战和紧迫的任务之一.将 TiO2和其它窄禁带半导体复合,已被证明是一种有效的可提高其可见光光催化性能的策略. Cu2O是一种禁带宽度为2.0 eV的 p型窄禁带半导体, InVO4则是一种禁带宽度为2.0 eV的 n型半导体,因它们可用于可见光光解水产氢和有机污染物的可见光降解而在过去的数年中引起了人们广泛的关注.但是纯的 Cu2O和 InVO4由于光生电子空穴对在其内部快速地复合,光催化活性通常都比较低.基于能带工程的策略本文设计了一种新型的可见光响应的 InVO4-Cu2O-TiO2三元纳米异质结,并通过普通的湿化学法进行制备:先通过水热法制备 InVO4,再通过溶胶-凝胶法制备 InVO4-TiO2二元复合物,最后通过沉淀和还原过程制备得到 InVO4-Cu2O-TiO2三元纳米异质结.
  在10%InVO4-40%Cu2O-50%TiO2三元纳米异质结的 X-射线衍射谱中没有观察到明显的杂质峰;通过透射电子显微技术和高分辨透射电子显微技术观察到了它们之间异质结的形成,纳米颗粒的尺寸范围在5?20 nm;经紫外可见漫反射光谱估算得到10%InVO4-40%Cu2O-50%TiO2的禁带宽度为2.78 eV,在可见光区域具有较强的吸收.以普通的9 W节能灯作为可见光光源光照甲基橙5 h后,纯的 InVO4, TiO2和 Cu2O几乎没有光催化活性;10%InVO4-90%TiO2的光催化活性也很低,甲基橙降解率为8%;70%Cu2O-30%TiO2对甲基橙降解率达84%,但初始活性较低;10%InVO4-40%Cu2O-50%TiO2对甲基橙降解率接近90%,并且循环使用6次后,其光催化活性的保持率还维持在90%以上,而50%Cu2O-50%TiO2光催化活性的保持率只有74%.
  经对使用过的10%InVO4-40%Cu2O-50%TiO2进行 X射线光电子能谱表征发现,存在一弱小的 Cu(II)震动卫星峰,表明在 InVO4-Cu2O-TiO2的光催化过程中 Cu2O的光蚀并不严重.从能带工程的角度分析, InVO4-Cu2O-TiO2三元纳米异质结具有优异的可见光催化性能的主要原因为: InVO4的导带电极电位约为?0.5 eV(vs. SHE,下同),价带电位约为+1.5 eV, Cu2O的分别约为?1.6和+0.4 eV,与 TiO2(导带和价带电极电位分别约为?0.23和+2.97 eV)相比,它们的导带位置更负,将它们组装成三元复合结构,可见光激发的导带电子就可能从 InVO4和 Cu2O的导带迁移到 TiO2的导带上去.同时, n型的 TiO2和 InVO4都与 p型的 Cu2O形成 p-n异质结, n型的 TiO2和 InVO4之间形成 n-n异质结,由于 p-n异质结中内电场的存在以及不同能级相互耦合,可进一步促进可见光激发的导带电子从 InVO4和 Cu2O的导带迁移到 TiO2的导带上去,以及可见光激发的价带空穴从 InVO4的价带迁移到 Cu2O的价带上去,从而实现光生载流子空间上的有效分离.本文有望为新型可见光响应的半导体复合催化剂的设计和制备提供新的思路.  相似文献   

10.
采用溶胶-凝胶法制备碱土金属钛酸盐MTiO3(M=Mg,Ca,Sr,Ba),并进一步与TiO2固相法复合制备MTiO3-TiO2异质结型复合光催化剂.以光催化降解亚甲基蓝(MB)为探针,评价了MTiO3和MTiO3-TiO2光催化剂的活性变化.结果表明,紫外光条件下碱土金属钛酸盐MTiO3的光催化活性顺序为:CaTiO3>BaTiO3>SrTiO3>MgTiO3,钙钛矿化合物的容忍因子、电负性以及催化剂的吸附性能都影响催化剂的降解效率.MTiO3与TiO2复合后形成的异质结复合光催化剂的催化活性得到显著的提高,催化剂浓度1.0g/L时,光催化反应1h后,MB(25mg/L)的降解率分别为82.6%,99.8%,93.7%,97.3%,异质结复合光催化剂活性顺序与MTiO3一致.光催化活性的提高与异质结界面形成电荷定向流动,促进光生电子、空穴的分离有关.  相似文献   

11.
首先以沉积-沉淀法制备AgBr/TiO2复合催化剂,然后采用离子交换法制备出新型的异质结型AgI/AgBr/TiO2光催化剂.利用XRD和UV-Vis对AgI/AgBr/TiO2光催化剂进行了表征.以甲基橙为染料模型,在可见光条件下(500 W、λ>420 nm)研究了AgI的含量对AgI/AgBr/TiO2催化活性的影响.结果表明,AgI拓展了催化剂的吸收光谱范围;AgI生成量为AgBr的5%时,AgI/AgBr/TiO2的催化活性最高.AgI/AgBr异质结的形成有利于光生电子和空穴的分离,提高AgI/AgBr/TiO2的催化活性.  相似文献   

12.
马占营 《分子催化》2016,30(6):575-582
采用共沉淀法制备了不同Ti/Bi摩尔比的TiO_2/Bi_2WO_6纳米异质结可见光光催化剂.采用XRD、HR-TEM、XPS及UV-vis DRS测试技术对样品的晶相结构、微观形貌、组成及吸光性能等进行了表征分析.以MB模拟环境污染物,考察了TiO_2/Bi_2WO_6纳米异质结的可见光光催化活性.结果表明,当热处理温度为700℃,n(Ti)∶n(Bi)的比值为1∶5.4,可见光照射180 min时,TiO_2/Bi_2WO_6纳米异质结对MB的降解率达80.0%,是纯Bi_2WO_6的12倍.光催化活性的提高可归因于TiO_2与Bi_2WO_6复合后可以产生能带交叠效应,从而促进光生电子-空穴对的有效分离.  相似文献   

13.
窄带隙Bi OI光催化剂因电荷重组速率快而导致其可见光下的光催化效率较低.本文以NaBH4为还原剂,采用简单的常温原位组装法在Bi OI上构建氧空位、金属Bi颗粒和Bi_2O_2CO_3共作用,以克服Bi OI的缺点.在合成的三元Bi/BiOI/(BiO)_2CO_3中,氧空位、双异质结(即Bi/BiOI和Bi OI/(BiO)_2CO_3)以及Bi粒子的表面等离子体共振效应均促进了电子-空穴分离和电荷载流子浓度的增加,从而提高了可见光的整体光催化效率.将制备的催化剂用于可见光下去除连续流空气中的ppb级NO.结果表明, Bi/BiOI/(BiO)_2CO_3的NO去除率显著增强,大约为50.7%,并远高于BiOI(1.2%).密度泛函理论计算和实验结果表明, Bi/BiOI/(BiO)_2CO_3复合材料可明显促进光催化NO氧化的活性氧生成.本文可提供一个新的策略来改性窄带隙半导体和探索其他含铋异质结构的可见光驱动光催化剂.XRD结果发现, BOI-70中出现Bi和(BiO)_2CO_3的特征峰,但BOI却很微弱; XPS结果表明,高价态Bi~(3+)被NaBH4部分还原而形成低价态金属Bi颗粒,且I3d峰位结合能进一步证实了BOI-70样品中存在BiOI,由此可见,成功制备了三元Bi/BiOI/(BiO)_2CO_3异质结催化剂, EPR结果表明氧空位的产生.SEM和TEM结果表明, Bi OI和三元Bi/BiOI/(BiO)_2CO_3催化剂为纳米片组装的花状结构.HRTEM的结果进一步显示了金属铋、正方晶相Bi OI和(BiO)_2CO_3对应的晶格间距.紫外-可见光催化去除NO的测试结果表明, BOI-70(50.7%)的光催化活性明显高于BOI(1.2%)和P25(11.5%),且在循环测试实验中表现出优异的稳定性.UV-visDRS测试结果显示, BOI-70具有更强的光吸收;PL结果表明,其光生电子-空穴对的分离效率更高.ESR结果表明,参与反应的主要活性物种为·O2-和·OH自由基.DFT计算结果证实了OVs对电荷载流子的局部环境和快速传输:OV为电子捕获陷阱,使电子从OVs转移到O_2分子形成活性氧物种;O2表面的吸附能从无缺陷BiOI时的–0.29 e V降到有缺陷的–0.76 eV, O-O键长从1.30增至1.37?,说明OVs通过降低氧的吸附能可促进O2分子在光催化剂表面的吸附.综上所述,由于BiNPs的异质结效应和SPR效应以及OVs的存在, Bi/BiOI/(BiO)_2CO_3三元体系的原位组装通过增加载流子浓度和加速电子空穴分离使光催化活性显著增加.  相似文献   

14.
卤氧铋是一类具有独特层状堆叠结构的半导体光催化剂,但单一的卤氧铋存在着光生电子与空穴易复合等缺陷.而贵金属颗粒通常可以充当电子"陷阱",促进电荷转移,延长载流子寿命,从而产生更好的光催化性能.本文成功合成了Bi_(24)O_(31)Cl_(10)光催化剂,并对其进行Pt纳米颗粒修饰,从而获得了具有高光催化性能的光催化剂Pt/Bi_(24)O_(31)Cl_(10).其中,Bi_(24)O_(31)Cl_(10)是以Bi(NO_3)_3·5H_2O和NaCl作为前驱体并用氨水调节pH后水热制得,而Pt的负载使用光还原法.对获得的样品进行XRD测试并将结果与Bi_(24)O_(31)Cl_(10)的标准卡片进行对比,发现各峰的位置都有较好的对应,证明Bi_(24)O_(31)Cl_(10)合成成功.采用TEM观测Pt/Bi_(24)O_(31)Cl_(10)的形貌,发现Bi_(24)O_(31)Cl_(10)呈片状,其表面存在Pt颗粒.XPS测试发现,该样品只含有Pt,Bi,O,Cl四种元素,且它们的价态符合预期.这进一步说明成功合成了Pt/Bi_(24)O_(31)Cl_(10).考察了可见光照射下Bi_(24)O_(31)Cl_(10)和Pt负载量分别为0.5%,1%,2%和3%的Pt/Bi_(24)O_(31)Cl_(10)对甲基橙溶液的降解的光催化性能.结果表明,相比于载体,Pt/Bi_(24)O_(31)Cl_(10)的光催化性能有了显著提高,其中1%Pt/Bi_(24)O_(31)Cl_(10)的光催化活性最佳,并且在循环降解实验中表现出稳定的光催化活性.DRS测试结果表明,Bi_(24)O_(31)Cl_(10)的带隙宽度为2.45 eV,而Pt的负载有效减小了禁带宽度,从而提高了催化剂对光的利用率.对Bi_(24)O_(31)Cl_(10)进行了DFT建模,结果显示,Bi,Cl和O原子的排列遵循分层叠加模型,且每层垂直于内部静电场堆叠.而从它的能带结构和状态密度(DOS)可知,其导、价带边沿较为分散,这意味着光生载流子的有效质量较小,从而使载流子的运输更为容易.利用DRS以及对Bi_(24)O_(31)Cl_(10)能带结构的计算结果,根据半经验公式可知,Bi_(24)O_(31)Cl_(10)的导、价带位置分别为0.395和2.845 eV.而Pt的费米能级为0.8 eV.结合ESR测试结果,可对Pt/Bi_(24)O_(31)Cl_(10)催化降解甲基橙的过程提出合理猜想:Bi_(24)O_(31)Cl_(10)被光激发后,其表面的Pt充当电子"陷阱"以促进电子和空穴分离,被Pt捕获的电子与表面吸附的O_2形成O_2~–,并进一步与甲基橙反应,完成光降解过程.  相似文献   

15.
本文采用高温固相原位制备新型二维SrSb2O6/g-C3N4异质结光催化复合材料,并将其用于可见光催化降解四环素.通过XRD和FT-IR谱对其结构进行表征.光催化降解实验表明,异质结复合材料较母体g-C3N4和SrSb2O6而言,光催化效率均得到了提升.其中,异质结样品SSO-CN-2对四环素溶液具有最优的光催化降解效...  相似文献   

16.
p-n异质结型光催化剂BiOBr/NaBiO3的制备与可见光催化活性   总被引:1,自引:0,他引:1  
采用化学蚀刻法在NaBiO3表面利用HBr与NaBiO3的反应原位沉积BiOBr,制备了异质结型光催化剂.利用X射线粉末衍射仪(XRD)、紫外-可见漫反射光谱仪(UV-Vis DRS)和扫描电子显微镜(SEM)等对其相结构、微观形貌和光吸收性能进行了表征.光催化实验结果表明,BiOBr/NaBiO3在可见光下可以有效降解罗丹明B(RhB)溶液,当BiOBr与NaBiO3的摩尔比为40.1%时,BiOBr/NaBiO3具有最大催化活性.通过不同牺牲剂的加入及荧光实验结果推测了该异质结型材料光催化过程中光生载流子的传输方向及活性物种.研究结果表明,BiOBr/NaBiO3催化活性的增强主要归结为两者之间形成了有效的异质结,其内建电场能够促进光生载流子的分离,同时h+在光催化降解过程中是主要的活性物种.  相似文献   

17.
根据表面化学蚀刻原理采用加热冷凝回流的方法制备了一系列组成的异质结构BiOI/NaBiO3光催化剂.利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和紫外-可见漫反射光谱(UV-Vis-DRS)等技术对其晶相结构、微观形貌和光吸收性能进行了表征.光催化实验表明,BiOI/NaBiO3在可见光下可以有效降解罗丹明B(RhB),当BiOI与NaBiO3的物质的量分数为一定值时,异质结构的光催化剂明显优于单一组分的光催化活性.通过加入不同的牺牲剂及荧光实验结果推测了该异质结构材料的光催化机理,并且分析了其光生载流子的传输方向及光催化过程的活性物种.研究表明,BiOI/NaBiO3的催化活性增强主要归结为两者之间形成了有效的异质结构,其内建电场能够促进光生载流子的分离,同时光生空穴h+在光催化降解过程中是主要的活性物种.  相似文献   

18.
电荷分离及转移是影响光催化效率的重要因素之一.本文采用简易的水热焙烧法,设计并构筑了Bi2Mo3O12@Bi2O2CO3(BMO@BOC)异质结,促进了光生载流子的分离与迁移,并优化了异质结构中的BMO与BOC的组分比例,其中BMO@BOC-1样品展现了最高的光催化脱除NO效率(~35%),且具有优异的循环稳定性.SEM与TEM结果表明,BMO@BOC-1样品是由超薄纳米片构成,可以提供丰富的反应活性位点,从而促进光催化反应的发生.HRTEM,XRD及Raman充分证明已成功合成不同组分比例的BMO@BOC异质结.同时, Raman与XPS结果表明, BMO@BOC异质结由Bi, O,C及Mo组成, XPS图谱中拟合峰位置的偏移是由异质结组分不同所致.值得注意的是, UV-visDRS结果表明,BMO@BOC-4具有最好的光谱吸收性能,但它与BMO@BOC-2和BMO@BOC-1样品的吸收带边相近,而PL结果则表明BMO@BOC-1具有更好的电荷分离性能,以及合适的组分比例,在一定程度上可以促进光吸收,并能最大限度的促进光生载流子的分离.BMO@BOC-1样品的ESR测试结果说明,·OH与·O2-的含量随着光照时间的延长而增加,证实了它们是光催化NO氧化的活性中间物种.另外,光催反应机制的研究在高效光催化剂的研发及其商业化应用中具有深远意义.本文还利用原位红外实时动态监测手段,采用"连续流测试法"与"间歇流测试法"直观动态地研究了BMO@BOC异质结催化剂表面光催化NO脱除反应过程.结果表明,在开灯前的吸附阶段于催化剂表面形成了NO-, NO2-以及NO2等中间产物,开灯后的氧化阶段出现终产物(NO3-).进一步深入分析,中间产物NO-和NO2-在氧化阶段会被氧化活性物种进一步氧化成NO3-,而中间产物NO2可能作为一种毒副产物影响NO的完全氧化.综上所述,本文将为理解NO氧化过程提供直观且动态的研究方法,对光催化技术的发展具有重要的指导意义.  相似文献   

19.
以钛酸四丁酯、KBr、AgNO3为前体,合成了具有异质结结构的纳米AgBr/Ti O2复合可见光催化剂.利用XRD、TEM、HRTEM和UV-Vis等方法对催化剂的晶相组成、形貌、粒度、微观结构、吸光性能等进行了表征.光催化降解亚甲基蓝活性结果表明,复合与单组分催化剂的光催化活性顺序为:AgBr/Ti O2AgBrAg-Br/P25P25Ti O2.含光敏剂AgBr的复合及单组份催化剂由于具有对可见光的良好吸收性能而具有较高的光催化活性.对于AgBr/Ti O2光催化剂,随mAgNO3/mTi O2比的增加,光催化活性先增强后减弱,当mAgNO3/mTi O2=3.35时光催化活性最高,分析结果表明,该复合催化剂粒径约15 nm,分散均匀且形成了紧密接触的AgBr/Ti O2异质结微结构,在紫外可见区(250~800 nm)都具有最强的光吸收.  相似文献   

20.
采用两步水热法制备了CdS/BiOBr复合光催化剂,并通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等手段对其物相、表面结构、光响应性等性质进行了表征.结果表明,合成的CdS/BiOBr复合材料是n-p型异质结,由CdS颗粒裹附在BiOBr纳米球的表面构成,这种结构不仅具有良好的可见光响应范围,且有利于光生电子的迁移,并有效地抑制光生电子/空穴对的复合.通过光催化降解模拟染料废水和光催化脱除模拟含硫燃料评价了CdS/BiOBr复合材料的可见光催化性能.结果表明,6%(质量分数)CdS/BiOBr降解次甲基蓝的拟一级动力学常数分别为BiOBr和CdS的5.3和9.6倍,脱除噻吩的拟一级动力学常数分别为BiOBr和CdS的1.9和3.2倍.CdS/BiOBr具有良好的光催化稳定性,循环使用5次后,降解率仍能达到90%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号