首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薛震  邱波  林广欣  赖丛芳  罗海 《化学进展》2008,20(4):594-601
本文介绍了一种新近发展起来的质谱离子化方法——解吸电喷雾电离(desorption electrospray ionization, DESI)及其最新研究进展。该方法首次于2004年提出后,由于其具有样品无需前处理就可以在常压条件下从各种载物表面直接分析固相,或凝固相样品等优势而得到了迅速的发展。本文描述了DESI的基本原理、离子源的结构和相关优化的参数,并对该离子化方法中所用的载物表面进行了总结。在实际应用方面,本文综述了DESI技术在常压气相化学反应产物监测,合成高聚物表征,爆炸物和化学战毒剂检测,以及在药品,生物代谢产物和生物组织表面分析方面的应用成果,同时对DESI的基础应用研究方向进行了分析和展望。  相似文献   

2.
A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.  相似文献   

3.
Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein complexes we report the development of a native DESI platform. By establishing conditions that preserve non‐covalent interactions we exploit the surface to capture a rapid turnover enzyme–substrate complex and to optimise detergents for membrane protein study. We demonstrate binding of lipids and drugs to membrane proteins deposited on surfaces and selectivity from a mix of related agonists for specific binding to a GPCR. Overall therefore we introduce this native DESI platform with the potential for high‐throughput ligand screening of some of the most challenging drug targets including GPCRs.  相似文献   

4.
Easy ambient sonic spray ionization (EASI) and desorption electrospray ionization (DESI) were used for imaging of a number of samples, including sections of rat brain and imprints of plant material on porous Teflon. A novel approach termed Displaced Dual-mode Imaging was utilized for the direct comparison of the two methods: Images were recorded with the individual rows alternating between EASI and DESI, yielding a separate image for each technique recorded under perfectly similar conditions on the same sample. EASI works reliably for imaging of all samples, but the choice of spray solvent and flow rate is more critical in tissue imaging with EASI than with DESI. The overall sensitivity of EASI is, in general, slightly lower than that of DESI, and the representation of the dynamic range is different in images of the two techniques for some samples. However, for abundant compounds, EASI works well, resulting in images of similar quality as DESI. EASI can thus be used in imaging experiments where the application of high voltage is impractical or undesirable. The present study is in its nature also a comparison of the characteristics of the two techniques, showing results also applicable for non-imaging work, with regards to sensitivity and experimental conditions.  相似文献   

5.
江玮  喻钢 《分析测试学报》2012,31(4):430-435
自建了简易的电喷雾解吸电离源(DESI),优化了DESI源喷口的位置和角度,并将其用于常见多肽和蛋白质的分析。多肽和小质量蛋白质(<20 kDa)可以容易地从表面解吸电离,生成清晰的质谱。而牛血清白蛋白(66.4 kDa)不能产生清晰的多电荷分布的质谱,说明当前DESI源的设计可能存在一个电离的分子量上限。通过比较不同的实验条件并对比ESI-MS,发现溶剂分子的挥发过程对电荷分布以及峰宽均有显著影响,可能是由于ESI更软引起。载样表面的性质对DESI-MS的信号强度有较大影响。金表面的自组装单分子膜(SAM)相对于纯金表面有较好的绝缘性,并有助于产生较强信号,说明来自表面的电子转移(电中和)是电喷雾解吸电离过程中的一个重要因素。该文的研究有助于对DESI-MS的实验条件和载样表面的选择,同时增进了对电喷雾解吸电离机理的了解。  相似文献   

6.
A new method for tissue imaging using desorption electrospray ionization (DESI) mass spectrometry is described. The technique utilizes a DESI source with a heated nebulizing gas and high‐resolution accurate mass data acquired with an LTQ‐Orbitrap mass spectrometer. The two‐dimensional (2D) automated DESI ion source creates images using the ions that are collected under high‐resolution conditions. The use of high‐resolution mass detection significantly improves the image quality due to exclusion of interfering ions. The use of a heated nebulizing gas increases the signal intensity observed at lower gas pressure. The technique developed is highly compatible with soft tissue imaging due to the minimal surface destruction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We report the use of fluorescence spectroscopy to investigate the amount of material removed from a PTFE surface and detected during desorption electrospray ionization (DESI) mass spectrometry measurements. The fluorescence intensity before and after DESI analysis of rhodamine 6G is used to determine the amount of material removed from the surface per mass spectrum. Calculations indicate low attomole amounts are removed per linear ion trap mass spectrum.  相似文献   

8.
We present omniSpect, an open source web- and MATLAB-based software tool for both desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) that performs computationally intensive functions on a remote server. These functions include converting data from a variety of file formats into a common format easily manipulated in MATLAB, transforming time-series mass spectra into mass spectrometry images based on a probe spatial raster path, and multivariate analysis. OmniSpect provides an extensible suite of tools to meet the computational requirements needed for visualizing open and proprietary format MSI data.   相似文献   

9.
Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at controlling chemical contaminants in food. Data are given for analysis of pesticides, natural toxins, veterinary drugs, food additives, adulteration, packaging migrants, and for applications of food forensics.We discuss practical aspects of DESI, including its strengths and weaknesses, highlighting specific features of performing chemical reactions during the desorption/ionization process in order to enhance sensitivity and selectivity.Finally, we discuss the position of DESI with respect to current food-analysis regulation and legislation. We envisage that DESI can be a rapid, qualitative or semi-quantitative, screening tool, ultimately being applied on site prior to sampling and transport of samples to food-control laboratories.  相似文献   

10.
We have studied the behavior of ferrocene CpFeCp (FcH), ferrocenium triiodide [FcH]+I3, dimethylaminomethylferrocene FcCH2NMe2 and its trimethylammonium salt [FcCH2NMe3]+I under the conventional conditions of electrospray ionization (ESI), when the substance solution is subjected to spraying, and in two versions of desorption electrospray ionization (DESI), when the sprayed solvent bombards the surface of solid or liquid samples. In addition to these techniques, the behavior of neutral compounds under conditions of electrospray ionization of vapors of the studied compounds in a gas phase (ESI_V) has been investigated. It has been shown using the examples of ferrocene and its dimethylaminomethyl derivative that the detection limits for these compounds occurring in a gas phase are comparable within an order of magnitude with their detection limits under the ESI and DESI conditions of solid and liquid samples. The high effectiveness of ionization of analyte vapors makes it possible to use the ESI method not only in combination with liquid (conventional ESI technology) and thin layer chromatography (DESI), but also with gas liquid chromatography (ESI_V). Thus, the electrospray ionization becomes a universal method allowing studies of a compound under the natural conditions in any state of aggregation, that is, solid, liquid, and gas. With the help of statistical methods for designing experiments (complete factorial experiment), quantitative evaluation of the influence of experimental parameters on the ion-formation processes under different ESI conditions has been carried out, which makes it possible to purposefully select the optimal conditions to record the ESI mass spectra with a minimum number of experiments. Moreover, analysis of the dependences of the mass spectra on the experimental parameters can serve as an instrument for studying the details of the ion-formation mechanisms depending upon different ways of ionization.  相似文献   

11.
Jain S  Heiser A  Venter AR 《The Analyst》2011,136(7):1298-1301
Spray Desorption Collection (SDC) allows for much larger areas of surfaces to be sampled compared to traditional swabbing techniques, providing a valuable pre-concentration advantage. Closely related to desorption electrospray ionization (DESI), analytes from the sample surface are collected onto a selected collection surface, which in a second step can be analyzed directly. Here we demonstrate the application of SDC as a large surface area sampling tool coupled with paper spray MS (PS-MS) and demonstrate its capabilities for cleaning validation of pharmaceutical equipment for both acidic and basic active ingredients from an aluminium surface.  相似文献   

12.
Desorption electrospray ionization (DESI) mass spectrometry has been implemented on a commercial ion‐trap mass spectrometer and used to optimize mass spectrometric conditions for DNA nucleobases: adenine, cytosine, thymine, and guanine. Experimental parameters including spray voltage, distance between mass spectrometer inlet and the sampled spot, and nebulizing gas inlet pressure were optimized. Cluster ions including some magic number clusters of nucleobases were observed for the first time using DESI mass spectrometry. The formation of the cluster species was found to vary with the nucleobases, acidification of the spray solvent, and the deposited sample amount. All the experimental results can be explained well using a liquid film model based on the two‐step droplet pick‐up mechanism. It is further suggested that solubility of the analytes in the spray solvent is an important factor to consider for their studies by using DESI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Internal energy distributions in desorption electrospray ionization (DESI)   总被引:3,自引:2,他引:1  
The internal energy distributions of typical ions generated by desorption electrospray ionization (DESI) were measured using the "survival yield" method, and compared with corresponding data for electrospray ionization (ESI) and electrosonic spray ionization (ESSI). The results show that the three ionization methods produce populations of ions having internal energy distributions of similar shapes and mean values (1.7-1.9 eV) suggesting similar phenomena, at least in the later stages of the process leading from solvated droplets to gas-phase ions. These data on energetics are consistent with the view that DESI involves "droplet pick-up" (liquid-liquid extraction) followed by ESI-like desolvation and gas-phase ion formation. The effects of various experimental parameters on the degree of fragmentation of p-methoxy-benzylpyridinium ions were compared between DESI and ESSI. The results show similar trends in the survival yields as a function of the nebulizing gas pressure, solvent flow rate, and distance from the sprayer tip to the MS inlet. These observations are consistent with the mechanism noted above and they also enable the user to exercise control over the energetics of the DESI ionization process, through manipulation of external and internal ion source parameters.  相似文献   

14.
基于常压质谱的直接、快速、无需样品预处理检测的优势,该文拓展了其在药物质检领域的应用。采用自行搭建的解析电喷雾(DESI)装置,对常用感冒药对乙酰氨基酚片进行快速质谱检测,无需样品预处理,直接获得药片中有效成分的分子结构信息。为克服基质差异对定量分析的影响,以淀粉为基质构建对乙酰氨基酚模拟药片,在优化的基础上进行定量实验。针对实际药片中高浓度对乙酰氨基酚检测的需要,研究了其在较高浓度范围的定量关系,结果显示,方法对0.35~4.52 mg/mm^2范围内的对乙酰氨基酚具有较好的线性关系(r^2=0.9982),定量下限为1.903 ng/mm^2,检出限为0.237 ng/mm^2,加标回收率为102%~114%。对3种市售的对乙酰氨基酚片进行直接检测,与厂家提供的标准数据相比,相对标准偏差(RSD)为7.2%~12%,表明方法具有较好准确度。该工作很好地证明了DESI-MS在药品快检中的优势,从而为药品质检提供了潜在的高效、可靠的检测手段。  相似文献   

15.
Sonic spray ionization is shown to create a supersonic cloud of charged droplets able to promote efficient desorption and ionization of drugs directly from the surfaces of commercial drug tablets at ambient conditions. Compared with desorption electrospray ionization (DESI), desorption sonic spray ionization (DeSSI) is advantageous since it uses neither heating nor high voltages at the spray capillary. DeSSI therefore provides a more friendly environment in which to perform ambient mass spectrometry (MS). DeSSI-MS is herein evaluated for the analysis of drug tablets, and found to be, in general, as sensitive as DESI-MS. The (high) voltage-free DeSSI method provides, however, cleaner mass spectra with less abundant solvent cluster ions and with enough abundant analyte signal for tandem mass spectrometry (MS/MS). These features may therefore facilitate the DeSSI-MS detection of low molar mass components or impurities, or both. The higher-velocity supersonic DeSSI spray also facilitates matrix penetration thus providing more homogenous sampling and longer lasting ion signals.  相似文献   

16.
Talaty N  Takáts Z  Cooks RG 《The Analyst》2005,130(12):1624-1633
Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.  相似文献   

17.
The salt tolerance of desorption electrospray ionization (DESI) was systematically investigated by examining three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl (1:1) from different surfaces. At physiological salt concentrations, the individual drugs in each mixture were observed in each experiment. Even at salt concentrations significantly above physiological levels, particular surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest in low nanogram amounts. Salt adducts, which are observed even in the absence of added salt, could be eliminated by adding 0.1% 7 M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated better signal/noise characteristics for DESI. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.  相似文献   

18.
A desorption electrospray ionization (DESI) source has been coupled to an ion mobility time-of-flight mass spectrometer for the analysis of proteins. Analysis of solid-phase horse heart cytochrome c and chicken egg white lysozyme proteins with different DESI solvents and conditions shows similar mass spectra and charge state distributions to those formed when using electrospray to analyze these proteins in solution. The ion mobility data show evidence for compact ion structures [when the surface is exposed to a spray that favors retention of "nativelike" structures (50:50 water:methanol)] or elongated structures [when the surface is exposed to a spray that favors "denatured" structures (49:49:2 water:methanol:acetic acid)]. The results suggest that the DESI experiment is somewhat gentler than ESI and under appropriate conditions, it is possible to preserve structural information throughout the DESI process. Mechanisms that are consistent with these results are discussed.  相似文献   

19.
This review reports the results of some studies carried out by us on the role of pneumatic aspects in electrospray and desorption electrospray surface ionization, with the aim to propose some relevant aspects of the mechanisms involved in these ionization methods. Electrospray ion sources, with the exception of the nano- electrospray source, operate with the concurrent action of a strong electrical field and a supplementary coaxial gas flow. The electrical field is responsible for electrospraying of the analyte solution but the use of a coaxial gas flow leads to a significant increase of the analyte signal and allows the use of higher solution flows. However, by employing capillary voltages much lower than those necessary to activate the electrospray phenomenon, analyte ions are still observed and this indicates that different mechanisms must be operative for ion production. Under these conditions, ion generation could take place from the neutral pneumatically sprayed droplet by field-induced droplet ionization. Also in the case of desorption electrospray ionization (DESI), and without any voltage on the spraying capillary as well as on the surface of interest, ions of analytes present on the surface become detectable and this shows that desorption/ionization of analytes occurs by neutral droplets impinging the surface. Consequently, the pneumatic effect of the impinging droplets plays a relevant role, and for these reasons the method has been called pneumatic assisted desorption (PAD). Some analogies existing between PAD and surface activated chemical ionization (SACI), based on the insertion of a metallic surface inside an atmospheric pressure chemical ionization source operating without corona discharge, are discussed.  相似文献   

20.
Redox changes occur in some circumstances when organic compounds are analyzed by desorption electrospray ionization mass spectrometry (DESI-MS). However, these processes are limited in scope and the data presented here suggest that there are only limited analogies between the redox behavior in DESI and the well-known solution-phase electrochemical processes in standard electrospray ionization (ESI). Positive and negative ion modes were both investigated and there is a striking asymmetry between the incidence of oxidation and of reduction. Although in negative ion mode DESI experiments, some aromatic compounds were ionized as odd-electron anion radicals, examples of full reduction were not found. By contrast, oxidation in the form of oxygen atom addition (or multiple oxygen atom additions) was observed for several different analytes. These oxidation reactions point to chemically rather than electrochemically controlled processes. Data is presented which suggests that oxidation is predominantly caused by reaction with discharge-created gas-phase radicals. The fact that common reducing agents and known antioxidants such as ascorbic acid are not modified, while a saturated organic acid like stearic acid is oxidized in DESI, indicates that the usual electrochemical redox reactions are not significant but that redox chemistry can be induced under special experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号