首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
Flow in a three-layer channel is modeled analytically. The channel consists of a transition layer sandwiched between a porous medium and a fluid clear of solid material. Within the transition layer, the reciprocal of the permeability varies linearly across the channel. The Brinkman model is used for the momentum equations for the porous medium layer and the transition layer. The velocity profile is obtained in closed form in terms of Airy, exponential, and polynomial functions. The overall volume flux and boundary friction factors are calculated and compared with values obtained with a two-layer model employing the Beavers–Joseph condition at the interface between a Darcy porous medium and a clear fluid.  相似文献   

2.
The boundary layer flow of a viscoelastic fluid of the second-grade type over a rigid continuous plate moving through an otherwise quiescent fluid with constant velocity U is studied. Assuming the flow to be laminar and two-dimensional, local similarity solution is found with fluid's elasticity and plate's withdrawal speed as the main variables. Results are presented for velocity profiles, boundary layer thickness, wall skin friction coefficient and fluid entrainment in terms of the local Deborah number. A marked formation of boundary layer is predicted, even at low Reynolds numbers, provided the Deborah number is sufficiently large. The boundary layer thickness and the wall skin friction coefficient are found to scale with fluid's elasticity—both decreasing the higher the fluid's elasticity. The amount of fluid entrained is also predicted to decrease whenever a fluid exhibits elastic behavior.  相似文献   

3.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a viscoelastic fluid of short memory (obeying Walters’ B′ model), a boundary layer is formed when the stretching velocity of the surface is less than the inviscid free-stream velocity and velocity at a point increases with increase in the elasticity of the fluid. On the other hand, an inverted boundary layer is formed when the surface stretching velocity exceeds the velocity of the free stream and the velocity decreases with increase in the elasticity of the fluid. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when the surface stretching velocity is equal to the velocity of the free stream. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. It is found that temperature at a point decreases with increase in the elasticity of the fluid.  相似文献   

4.
Linear stability analysis has been performed to investigate the effect of internal heat generation on the criterion for the onset of Marangoni convection in a two-layer system comprising an incompressible fluid-saturated anisotropic porous layer over which lies a layer of the same fluid. The upper non-deformable free surface and the lower rigid surface are assumed to be insulated to temperature perturbations. The fluid flow in the porous layer is governed by the modified Darcy equation and the Beavers–Joseph empirical slip condition is employed at the interface between the two layers. The resulting eigenvalue problem is solved exactly. Besides, analytical expression for the critical Marangoni number is also obtained by using regular perturbation technique with wave number as a perturbation parameter. The effect of internal heating in the porous layer alone exhibits more stabilizing effect on the system compared to its presence in both fluid and porous layers and the system is least stable if the internal heating is in fluid layer alone. It is found that an increase in the value of mechanical anisotropy parameter is to hasten the onset of Marangoni convection while an opposite trend is noticed with increasing thermal anisotropy parameter. Besides, the possibilities of controlling (suppress or augment) Marangoni convection is discussed in detail.  相似文献   

5.
When petroleum is extracted from strata by replacing it with other fluids, the question arises of the stability of the interface. Uniformity in the injection horizons is in practice achieved by such methods as using polymer additives to thicken the replacing fluid or introducing an intermediate layer with non-Newtonian properties between the replacing fluid and the fluid being replaced. In this article the stability of the interface of non-Newtonian fluids being filtered exponentially is investigated in a linear formulation. The condition governing the stability of the interface of two non-Newtonian fluids is found and the influence of the thickness of the intermediate layer on the stability is also demonstrated. The presence of the layer is found to be essential for certain parameters of fluids moving in a porous medium if the replacement is to be stable.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 183–186, March–April, 1976.The author wishes to thank V. N. Nikolaevskii for suggesting the subject for this investigation and A. T. Listrov for his constant interest in the work.  相似文献   

6.
Various approaches to study the fluid flow in a fractured porous medium are discussed. Three approaches are compared by the example of axisymmetric flow in a fluid conducting layer. In the first approach, an elastic flow regime (Terzaghi’s model) is considered for a layer with homogenized properties. In the second approach, the problem is formulated in terms of two unknown functions of pressure averaged over fracture cracks and pores. In the framework of the third approach, a two-scale flow model in which the fluid flow through pores is limited by the size of each porous block is proposed.  相似文献   

7.
The present study is concerned with buoyancy-driven convection experiments in a circular horizontal differentially heated layer of air. The radius-to-height ratio of 14, and Rayleigh numbers of 5,861 and 12,124 have been considered. A Mach–Zehnder interferometer has been used to visualize the convection patterns in the fluid layer. The fluid layer has been imaged at view angles of 0, 45 and 90°. Results obtained show that fringe patterns appropriate for a cavity square in plan are seen in the fluid layer during the early stages of the experiments. After the passage of the initial transients, steady fringes have been observed in the fluid layer for a Rayleigh number of 5,861. At Ra=12,124, a dominant pattern was detectable combined with mild unsteadiness. The steady thermal field at Ra=5,861 displayed symmetry with respect to the viewing angle. A stronger three dimensionality was seen at the higher Rayleigh number. The average steady state Nusselt numbers were found to vary with view angle from 1.91 to 2.04 at Ra=5,861 and 2.28 to 2.43 at Ra = 12,124. The cavity-averaged Nusselt numbers are in good agreement with the available correlations.  相似文献   

8.
The problem of translational motion of a vortex source in a three-layer fluid bounded by a bottom from below is considered. The fluid in each layer is perfect, incompressible, heavy, and homogeneous. Based on the previously developed method, formulas for disturbed complex velocities of the fluid in each layer and the wave drag and lift force of the vortex source are obtained. The vortex motion is considered near the interface of two semi-infinite fluid media and in a two-layer fluid with different conditions at the boundary. In all cases, the hydrodynamic characteristics of the vortex source are given as functions of the Froude number. In a number of problems, these characteristics have discontinuities at the transition through the critical Froude numbers. The character of these discontinuities is studied analytically. Omsk Department of Sobolev Institute of Mathematics, Siberian Division, Russian Academy of Sciences, Omsk 644099. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 140–146, September–October, 2000.  相似文献   

9.
The gravity field and vibration effect on the flow of a viscoplastic fluid layer along an inclined solid surface is investigated. The rheological properties of the fluid are described using the Williamson equation. The vibrations are shown to have a considerable effect on the fluid layer flow intensity and direction; in particular, they generate a considerable mean fluid flow even in the cases in which the fluid is at rest in the absence of the vibrations.  相似文献   

10.
A linear instability analysis for the inception of double-diffusive convection with a concentration based internal heat source is presented. The system encompasses a layer of fluid which lies above a porous layer saturated with the same fluid. Detailed stability characteristics results are presented for key physical parameters including the solute Rayleigh number, depth ratio of the fluid to porous layer and strength of radiative heating.  相似文献   

11.
Thermocapillary convection in a plane horizontal fluid layer with concentrated heating of the free surface is modeled numerically using the Navier-Stokes equations and the heat transport equation. This makes it possible to examine the structure of the convection throughout the fluid volume, in particular in the region where the motion is weak. The deformation of the free surface is assumed to be negligibly small. In the case of a ponderable fluid this assumption is justified given certain upper and lower constraints on the temperature difference and the thickness of the layer, respectively, [9, 10]. Under conditions of weightlessness a fluid layer of constant thickness in a rectangular channel can be realized at a contact angle of 90° [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 108–113, July–August, 1987.  相似文献   

12.
An inhomogeneous solid layer is bounded on one side by a fluid half-space and on the other by a homogeneous solid half-space. An acoustic wave in the fluid is incident on the layer. Experiments suggest that some kind of shear-wave resonance of the layer exists. Here, the layer is modeled with exponential variations of the material properties (Epstein model). Solutions in terms of hypergeometric functions are found. Genuine resonances are found but only when the layer is not bonded to the solid half-space; these are analogous to Jones frequencies in fluid–solid interaction problems. When the solid half-space is present, the resonances become complex: they are scattering frequencies. Simple but accurate asymptotic approximations are found using known estimates for hypergeometric functions with large parameters.  相似文献   

13.
The results of a numerical solution of the problem of the unsteady convective motion generated in a fluid layer by the formation at the initial instant of a heated zone in the form of a thin cylindrical column, extending from the surface into the interior of the fluid, are presented. The problem is formulated with allowance for both thermocapillary and thermogravitational convection. The influence of the thermocapillary and thermogravitational effects on the fluid motion for various layer thicknesses is subjected to parametric analysis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 25–29, November–December, 1989.  相似文献   

14.
On the basis of a numerical simulation of convection in a horizontal fluid layer with a uniform heat source it is concluded that the convective heat flux is constant over the entire convection layer not only in the case of steady-state external conditions but also in the case of heating (cooling) of the fluid layer at a constant rate. The convective heat flux is mainly determined by the Rayleigh number and depends only slightly on the layer heating (cooling) rate.  相似文献   

15.
Coupled buoyancy (Bénard) and thermocapillary (Marangoni) convection in a thin fluid layer of a viscoelastic fluid are studied. The viscoelastic fluid is modeled by Jeffreys' constitutive equation. The lower surface of the layer is in contact with a rigid heat-conducting plate while its upper surface is subject to a temperature-dependent surface tension. The critical temperature difference between both boundaries corresponding to the onset of convection is calculated. The role of the various viscometric coefficients is discussed. In the appendix it is shown that Jeffreys' constitutive relation is easily derived from thermodynamic considerations based on extended irreversible thermodynamics.  相似文献   

16.
The linear steady problem of an irrotational uniform flow past a horizontal circular cylinder located in the upper or in the lower layer of a two-layer fluid is solved by the multipole-expansion method. The flow is perpendicular to the axis of the cylinder. The fluid is assumed to be inviscid and incompressible, and the flow in each layer is assumed to be potential. The upper layer can be bounded by a free surface or a solid lid, and the lower layer by a rigid horizontal bottom. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 91–101, November–December, 1998.  相似文献   

17.
Heat transfer in stagnation-point flow towards a stretching sheet   总被引:5,自引:0,他引:5  
 Steady two-dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity and an inverted boundary layer is formed when the stretching velocity exceeds the free stream velocity. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. Received on 12 July 2000 / Published online: 29 November 2001  相似文献   

18.
Multiple steady-state solutions of natural convection in an inclined enclosure with a fluid layer and a heat-generating porous bed is investigated numerically by the finite volume method. The conservation equations for the porous layer are based on a general flow model which includes both the effects of flow inertia and friction. The flow in fluid layer is modeled by Navier–Stokes equations. The method of pseudo arc-length continuation is adapted in studying the effects of tilt angle on flow pattern and heat transfer. It is found that, in the whole domain of tilt angle, there exist two groups of solutions with quite different flow pattern and heat transfer behavior. The effects of aspect ratio on flow pattern and heat transfer have also been studied. Received on 04 March 1997  相似文献   

19.
In many technological processes, thin extended layers of nonuniformly heated fluid are used [1–3]. If they are sufficiently thin, thermocapillary forces have a decisive influence on the occurrence and development of motion of the fluid [4–6]. Investigation of convective motion in such a layer is of great interest for estimating the intensity of heat and mass transfer in technological processes. This paper is a study of unsteady thermocapillary motion in a layer of viscous incompressible fluid with free surface in which a thermal inhomogeneity is created at the initial time. Approximate expressions are obtained for the fields of the velocity, temperature, and pressure in the fluid, and also for the shape of the free surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 17–25, May–June, 1991.  相似文献   

20.
The initial-boundary value problem of the vertical ascent of a circular cylinder in a multilayer fluid is considered within the nonlinear theory. In each layer the fluid is ideal, incompressible, heavy, and homogeneous. At the initial instant of time the cylinder is located in the lower layer and begins smoothly to accelerate vertically from zero to a constant velocity. A system of integrodifferential equations of the problem is obtained. As unknowns, this system contains both the intensities of the singularities simulating the fluid and rigid boundaries and the functions describing the shape of the interface between the fluid media. The numerical solution of this system is based on two iteration processes, one of which is associated with time integration using the Runge-Kutta-Felberg scheme, while the other is associated with the solution of a system of linear algebraic equations obtained by discretization of the integral relations in each time step. The problem of the vertical ascent of a cylinder in a three-layer fluid (seawater, fresh water and air) is considered in detail. The results of calculating the perturbations of the fluid interfaces and the distributed and total hydrodynamic contour characteristics are given. The results obtained are compared with the solution of the problem of the ascent of a circular cylinder to the interface between water and air media. It is concluded that the third layer and the Froude number significantly affect the nature of the perturbations induced by the contour. Omsk, e-mail: gorlov@iitam.omsk.net.ru. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 153–159, March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00093).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号