首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We have developed an on-line digestion device-based on the nano-TiO2-catalyzed photooxidation of arsenic species—for coupling between microbore anion-exchange chromatography (μ-LC) and hydride generation (HG)-inductively coupled plasma mass spectrometry (ICP-MS) systems that can be used for the determination of urinary arsenic species. To maximize the signal intensities of the desired arsenic species, we optimized the photocatalytic oxidation efficiency of the analyte species and developed a rapid on-line pre-reduction process for converting the oxidized species into As(III) prior to HG-ICP-MS determination. Under the optimized conditions for the nano-TiO2-catalyzed photooxidation-i.e., using 1 g of nano-TiO2 per-liter, at pH 5.2, and illuminating for 3 min- As(III), monomethylarsenoic acid (MMA), and dimethylarseinic acid (DMA) can be converted quantitatively into As(V). To attain maximal hydride generation efficiency, 0.5% Na2S2O4 solution, which can reduce As(V) to As(III) virtually instantaneously upon on-line mixing, was added as a pre-reductant prior to performing the HG step. In light of all the HG efficiency of tested arsenicals were improved and a segmented-flow technique was employed to avoid the loss of peak resolution when using our proposed on-line μ-LC-UV/nano-TiO2/HG-ICP-MS, the detection limits for As(III), MMA, DMA, and As(V) were all in the range of sub-microgram-per-liter (based on 3 sigma). A series of validation experiments-analysis of neat and spiked urine samples-indicated that our proposed methods can be applied satisfactorily to the determination of As(III), MMA, DMA, and As(V) in urine samples.  相似文献   

2.
This study aimed to establish complementary high performance liquid chromatography (HPLC) methods including three modes of separation: ion pairing, cation exchange, and anion exchange chromatography, with detection by inductively coupled plasma mass spectrometry (ICPMS). The ion pairing mode enabled the separation of inorganic arsenate (As(V)), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V)). However, the ion pair mode was unable to differentiate inorganic arsenite (As(III)) from arsenobetaine (AsB); instead, cation exchange chromatography was used to isolate and quantify AsB. Anion exchange chromatography was able to speciate all of the aforementioned arsenic species. Potential inaccurate quantification problem with urine sample containing elevated concentration of AsB, which eluted immediately after As(III) in anion exchange or ion pairing mode, was overcame by introducing a post-column hydride generation (HG) derivatization step. Incorporating HG between HPLC and ICPMS improved sensitivity and specificity by differentiating AsB from hydride-forming arsenic species. This paper emphasizes the usefulness of complementary chromatographic separations in combination with HG-ICPMS to quantitatively determine concentrations of As(III), DMA(V), MMA(V), As(V), and AsB in the sub-microgram per liter range in human urine.  相似文献   

3.
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.  相似文献   

4.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A pre-oxidation procedure which converts arsenite [As(III)] into arsenate [As(v)] was investigated in urinary arsenic speciation prior to on-line photo-oxidation hydride generation with ICP-MS detection. This sample pre-oxidation method eliminates As(III) and As(v) preservation concerns and simplifies the chromatographic separation. Four oxidants, Cl2, MnO2, H2O2 and I3-, were investigated. Chlorine (ClO-aq) and MnO2 selectively converted As(III) into As(v) in pure water samples, but the conversion was inefficient in the complex urine matrix. Oxidation of As(III) by H2O2 was least affected by the urine matrix, but the removal of excess H2O2 at pH 10 proved difficult. The most appropriate oxidant for the selective conversion of As(III) into As(v) with minimal interference from the urine matrix is I3- at pH 7. Unlike H2O2, excess oxidant can be easily removed by the addition of S2O3(2-). The I3-(-)S2O3(2-) treatment on a fortified sample of reconstituted NIST SRM 2670 freeze dried urine indicated that arsenobetaine (AsB), dimethlyarsinic acid (DMA), monomethylarsonic acid (MMA) and As(v) were not chemically degraded with recoveries ranging from 95 to 102% for all arsenicals. Sample clean-up involved pH adjustment prior to C18 filtration in order to achieve efficient As(III) conversion and quantitative recoveries of AsB and DMA. The concentrations determined in NIST SRM 2670 freeze dried urine were AsB 17.2 +/- 0.5, DMA 56 +/- 4 and MMA 10.3 +/- 0.3 with a combined total of 83 +/- 5 micrograms L-1 (+/- 2 sigma).  相似文献   

6.
建立了稻米中砷酸根[As(Ⅴ)]、亚砷酸根[As(Ⅲ)]、砷甜菜碱(AsB)、一甲基砷(MMA)和二甲基砷(DMA)的液相色谱-电感耦合等离子体质谱(LC-ICP-MS)检测方法。以0.3 mol/L硝酸水溶液为提取试剂,样品在石墨消解仪中于95 ℃消解1.5 h,上清液供LC-ICP-MS分析。5种砷形态采用Dionex IonPac AS19阴离子交换柱(250 mm×4 mm)分离,经ICP-MS检测。比较了4种提取液对稻米中5种砷形态的提取效率,并对提取溶剂的浓度、提取温度和提取时间等条件进行了优化。通过加标回收试验结合测定标准物质考察了方法准确度及精密度,在2个加标水平上各形态的回收率为89.6%~99.5%,RSD(n=5)不大于3.6%,大米标准物质中各形态之和的测定结果与其标准值吻合,5种砷形态的线性范围AsB和DMA为0.05~200 μg/L,As(Ⅲ)和MMA为0.10~400 μg/L,As(V)为0.15~600 μg/L,方法检出限为0.15~0.45 μg/kg。结果表明,本方法简单、灵敏、耐用,可用于稻米中5种砷形态的准确定量和风险评估。  相似文献   

7.
Neutron activation analysis (NAA) in combination with mainly high-performance liquid chromatography (HPLC) has been developed for the determination of low levels of five arsenic species, namely As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) in water samples. Organically bound arsenic (OBAs) and total arsenic have also been determined. In addition to anion-exchange HPLC, solid phase extraction and open-column cation-exchange chromatographic methods have also been used. The detection limits of the method have been found to be 0.005 ng·cm−3 for OBAs, 0.02 ng·cm−3 for AsB, DMA, MMA, As(III), and As(V) and 0.12 ng·cm−3 for total arsenic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Enzymatic hydrolysis of seafood materials for isolating arsenic species (As(III), As(V), DMA and AsB) has been successfully performed by assisting the procedure with ultrasound energy (35 kHz) supplied by an ultrasound water-bath. The use of pepsin, as a proteolytic enzyme, under optimized operating conditions (pH 3.0, temperature 40 °C, enzyme to sample ratio of 0.3) led to an efficient assistance of the enzymatic process in a short period of time (from 4.0 to 30 min). The enzymatic extract was then subjected to a clean-up procedure based on ENVI-Carb™ solid phase extraction (SPE). An optimized anion exchange high performance liquid chromatography (HPLC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) permitted the fast separation (less than 15 min) of six different arsenic species (arsenite, As(III); arsenate, As(V); dimethylarsinic acid, DMA; and arsenobetaine, AsB; as well as monomethylarsonic acid, MMA; and arsenocholine, AsC) in a single run. Relative standard deviations (n = 11) of the over-all procedure were 7% for AsB and DMA, 11% for As(III) and 9% for MMA. HPLC–ICP-MS determinations were performed using aqueous calibrations covering arsenic concentrations of 0, 5, 10, 25, 100 and 200 μg L−1 (expressed as arsenic) for As(III), As(V), MMA, DMA and AsC; and 0, 125, 250, 500, 750, 1000 and 2000 μg L−1 (expressed as arsenic) for AsB. Germanium (5 μg L−1) was used as an internal standard. Analytical recoveries from the anion exchange column varied from 96 to 105% (enzymatic digests spiked with low target concentrations), from 97 to 104% (enzymatic digests spiked with intermediate target concentrations), and from 98 to 103% (enzymatic digests spiked with high target concentrations). The developed method was successfully applied to two certified reference materials (CRMs), DORM-2 and BCR 627, which offer certified AsB and DMA contents, and also to different seafood samples (mollusks, white fish and cold water fish). Good agreement between certified and found AsB concentrations was achieved when analyzing both CRMs; and also, between certified and found DMA concentrations in BCR 627. In addition, the sum of the different arsenic species concentrations found in most of the analyzed samples was statistically similar to the assessed total arsenic concentrations after a total sample matrix decomposition treatment.  相似文献   

9.
The feasibility of pressurized conditions to assist enzymatic hydrolysis of seafood tissues for arsenic speciation was novelty studied. A simultaneous in situ (in cell) clean-up procedure was also optimized, which speeds up the whole sample treatment. Arsenic species (As(III), MMA, DMA, As(V), AsB and AsC) were released from dried seafood tissues using pepsin as a protease, and the arsenic species were separated/quantified by anion exchange high performance liquid chromatography (HPLC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). Variables inherent to the enzymatic activity (pH, temperature and ionic strength), the amount of enzyme (pepsin), and factors affecting pressurization (pressure, static time, number of cycles and amount of dispersing agent, C-18) were fully evaluated. Pressurized assisted enzymatic hydrolysis (PAEH) with pepsin can be finished after few minutes (two cycles of 2 min each one plus 3 min to reach the hydrolysis temperature of 50 °C). A total sample solubilisation is not achieved after the procedure, however it is efficient enough for breaking down certain bonds of bio-molecules and for releasing arsenic species. The developed method has been found to be precise (RSDs lower than 6% for As(III), DMA and As(V); and 3% for AsB) and sensitive (LOQs of 18.1, 36.2, 35.7, 28.6, 20.6 and 22.5 ng/g for As(III), MMA, DMA, As(V), AsB and AsC, respectively). The optimized methodology was successfully applied to different certified reference materials (DORM-2 and BCR 627) which offer certified AsB and DMA contents, and also to different seafood products (mollusks, white fishes and cold water fishes).  相似文献   

10.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

11.
Le XC  Cullen WR  Reimer KJ 《Talanta》1993,40(2):185-193
An analytical method based on microwave decomposition and flow injection analysis (FIA) coupled to hydride generation atomic absorption spectrometry (HGAAS) is described. This is used to differentiate arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) from organoarsenic compounds usually present in seafood. Without microwave digestion, direct analysis of urine by HGAAS gives the total concentration of As(III), As(V), MMA and DMA because organoarsenic compounds such as arsenobetaine, usually found in most seafood, are not reducible upon treatment with borohydride and therefore cannot be determined by using the hydride generation technique. The microwave oven digestion procedure with potassium persulfate and sodium hydroxide as decomposition reagents completely decomposes all arsenicals to arsenate and this can be measured by HGASS. Microwave decomposition parameters were studied to achieve efficient decomposition and quantitative recovery of arsenobetaine spiked into urine samples. The method is applied to the determination of urinary arsenic and is useful for the assessment of occupational exposure to arsenic without intereference from excess organoarsenicals due to the consumption of seafood. Analysis of urine samples collected from an individual who ingested some seafood revealed that organoarsenicals were rapidly excreted in urine. After the ingestion of a 500-g crab, a 10-fold increase of total urinary arsenic was observed, due to the excretion of organoarsenicals. The maximum arsenic concentration was found in the urine samples collected approximately between 4 to 17 hr after eating seafood. However, the ingestion of organoarsenic-containing seafoods such as crab, shrimp and salmon showed no effect on the urinary excretion of inorganic arsenic, MMA and DMA.  相似文献   

12.
Shraim A  Chiswell B  Olszowy H 《Talanta》1999,50(5):1109-1127
The effects on the absorbance signals obtained using HG-AAS of variations in concentrations of the reaction medium (hydrochloric acid), the reducing agent [sodium tetrahydroborate(III); NaBH(4)], the pre-reducing agent (l-cysteine), and the contact time (between l-cysteine and arsenic-containing solutions) for the arsines generated from solutions of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsenic acid (DMA), have been investigated to find a method for analysis of the four arsenic species in environmental samples. Signals were found to be greatly enhanced in low acid concentration in both the absence (0.03-0.60 M HCl) and the presence of l-cysteine (0.001-0.03 M HCl), however with l-cysteine present, higher signals were obtained. Total arsenic content and speciation of DMA, As(III), MMA, and As(V) in mixtures containing the four arsenic species, as well as some environmental samples have been obtained using the following conditions: (i) total arsenic: 0.01 M acid, 2% NaBH(4), 5% l-cysteine, and contact time<10 min; (ii) DMA: 1.0 M acid, 0.3-0.6% NaBH(4), 4.0% l-cysteine, and contact time <5 min; (iii) As(III): 4-6 M acid and 0.05% NaBH(4) in the absence of l-cysteine; (iv) MMA: 4.0 M acid, 0.03% NaBH(4), 0.4% l-cysteine, and contact time of 30 min; (v) As(V): by difference. Detection limits (ppb) for analysis of total arsenic, DMA, As(III), and MMA were found to be 1.1 (n=7), 0.5 (n=5), 0.6 (n=7), and 1.8 (n=4), respectively. Good percentage recoveries (102-114%) of added spikes were obtained for all analyses.  相似文献   

13.
The stability of arsenic species (arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]) in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 degrees C, +20 degrees C and +40 degrees C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 micro g L(-1) for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration.  相似文献   

14.
刘华琳  赵蕊  韦超  邢志  闫继仁  张新荣 《分析化学》2005,33(11):1522-1526
运用自行设计的接口,实现了高效液相色谱与原子吸收光谱的联用。通过对常见砷化合物进行形态分忻,考察了自行设计的高效液相色谱+紫外在线消解-氢化物发生原子吸收光谱联用(HPLC—UV—HGAAS)接口的性能。实现了将分离后不能直接用于氢化物发生的大分子,通过紫外“在线”消解成小分子砷化合物的目的。确定了仪器的最优化分析条件。建立了快速、直接、连续、在线的HPLC-UV-HGAAS元素形态分析方法。  相似文献   

15.
The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion‐exchange column run by high‐performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4HCO3 at pH 8.6 as mobile phase A and 4 mM NH4HCO3, 40 mM NH4NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples.  相似文献   

16.
An on-line method capable of the separation of arsenic species was developed for the speciation of arsenite As(III), arsenate As(V), monomethylarsenic (MMA) and dimethylarsenic acid (DMA) in biological samples. The method is based on the combination of high-performance liquid chromatograph (HPLC) for separation, UV photo oxidation for sample digestion and hydride generation atomic fluorescence spectrometry (HGAFS) for sensitive detection. The best separation results were obtained with an anion-exchange AS11 column protected by an AG11 guard column, and gradient elution with NaH2PO4 and water as mobile phase. The on-line UV photo oxidation with 1.5% K2S2O8 in 0.2 mol L(-1) NaOH in an 8 m PTFE coil for 40 s ensures the digestion of organoarsenic compounds. Detection limits for the four species were in the range of 0.11-0.15 ng (20 microL injected). Procedures were validated by analysis of the certified reference materials GBW09103 freeze-dried human urine and the results were in good agreement with the certified values of total arsenic concentration. The method has been successfully applied to speciation studies of blood arsenic species with no need of sample pretreatment. Speciation of arsenic in blood samples collected from two patients after the ingestion of realgar-containing drug reveals slight increase of arsenite and DMA, resulting from the digestion of realgar.  相似文献   

17.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

18.
CE was coupled to inductively coupled plasma MS (ICP-MS) and ESI-MS to identify and quantify the arsenic species arsenobetaine (AsB), arsenite (As(III)), arsenate (As(V)), and dimethylarsinic acid (DMA). A GC-flame ionization detector (FID)-based German standard method and ICP-MS were used for validation of the data obtained for arsenobetaine and total arsenic, respectively. LODs obtained with the CE-ESI-TOF-MS method were 1.0x10(-7) M for AsB, 5.0x10(-7) M for DMA, and 1.0x10(-6) M for As(III) and As(V). For the CE-ICP-MS method, LODs were 8.5x10(-8) M for AsB, 9.5x10(-8) M for DMA, 9.3x10(-8) M for As(III), and 6.2x10(-8) M for As(V). While CE-ICP-MS provided high sensitivity and better reproducibility for quantitative measurements, CE-ESI-MS with a TOF mass analyzer proved to be valuable for species identification. With this setup, fish samples were prepared and analyzed and the obtained data were successfully validated with the independent methods.  相似文献   

19.
《Analytical letters》2012,45(10):1573-1586
Arsenic (As) speciation in edible seaweed has received a considerable research interest due to its impact on the food safety and human health. In this paper, we developed a simple and cost-effective methodology to extract, separate, and analyze As species in Porphyra samples collected from Jiangsu, Zhejiang, and Shandong provinces of China. Four extraction methods were compared in terms of extraction efficiency and resolution of As species. Microwave-assisted water extraction was chosen due to its short time (5 min) and high efficiency (93% of total As extracted). Total As concentration in the Porphyra samples varied within 14.0–42.1 µg g?1, determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) after acid digestion. Five As species were determined by high performance liquid chromatography—ultraviolet photo-oxidation—hydride generation—atomic fluorescence spectrometry (HPLC–(UV)–HG–AFS). DMA was found only in one sample with the concentration of 0.67 µg g?1. No As(III), As(V), MMA, and AsB were detected. Taken together, the As speciation results suggest that the risk associated with As in Porphyra to human health may be negligible.  相似文献   

20.
Speciation of organic and inorganic arsenic by HPLC-HG-ICP   总被引:2,自引:0,他引:2  
This paper deals with the application of high performance liquid chromatography (HPLC), hydride generation (HG) and inductively coupled plasma atomic emission spectrometry (ICP) to determine four species of arsenic: As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The coupling conditions of HPLC-HG-ICP are given. Two anionic exchange columns (Nucleosil-5SB and Hamilton PRP X-100) are tested and the separation conditions optimized. Two acids (H2SO4 and HCl at different concentrations) are tested to obtain the hydrides. The proposed method is applied to determine four arsenic species in a synthetic matrix simulating a fish extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号