首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is devoted to investigation of the processes of excitation energy transfer between the host cations (Tb3+ ions) and the activators (Ce3+ and Eu3+ ions) in single-crystalline films of Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet which is considered as a promising luminescent material for the conversion of LED's radiation. The cascade process of excitation energy transfer is shown to be realized in TbAG:Ce,Eu: (i) from Tb3+ ions to Ce3+ and Eu3+ ions; (ii) from Ce3+ ions to Eu3+ ions by means of dipole-dipole interaction and through Tb3+ ion sublattice.  相似文献   

2.
The luminescence of excitons and antisite defects (ADs) was investigated, as well as the specific features of the excitation energy transfer from excitons and ADs to the activator (Ce3+ ion) in phosphors based on Lu3Al5O12:Ce (LuAG:Ce) single crystals and single-crystalline films, which are characterized by significantly different concentrations of ADs of the Lu Al 3+ type and vacancy-type defects. The luminescence band with λmax = 249 nm in LuAG:Ce single-crystal films is due to the luminescence of self-trapped excitons (STEs) at regular sites of the garnet lattice. The excited state of STEs is characterized by the presence of two radiative levels with significantly different transition probabilities, which is responsible for the presence of two excitation bands with λmax = 160 and 167 nm and two components (fast and slow) in the decay kinetics of the STE luminescence. In LuAG:Ce single crystals, in contrast to single-crystal films, the radiative relaxation of STEs in the band with λmax = 253.5 nm occurs predominantly near Lu Al 3+ ADs. The intrinsic luminescence of LuAG:Ce single crystals at 300 K in the band with λmax = 325 nm (τ = 540 ns), which is excited in the band with λmax = 175 nm, is due to the radiative recombination of electrons with holes localized near Lu Al 3+ ADs. In LuAG:Ce single crystals, the excitation of the luminescence of Ce3+ ions occurs to a large extent with the participation of ADs. As a result, slow components are present in the luminescence decay of Ce3+ ions in LuAG:Ce single crystals due to both the reabsorption of the UV AD luminescence in the 4f-5d absorption band of Ce3+ ions with λmax = 340 nm and the intermediate localization of charge carriers at ADs and vacancy-type defects. In contrast to single crystals, in phosphors based on LuAG:Ce single-crystal films, the contribution of slow components to the luminescence of Ce3+ ions is significantly smaller due to a low concentration of these types of defects.  相似文献   

3.
The paper is dedicated to investigation of the Mn2+ luminescence in Tb3Al5O12 (TbAG) garnet, as well as the processes of excitation energy transfer between host cations (Tb3+ ions) and activators (Mn2+ and Mn2+-Ce3+ pair ions) in single crystalline films of TbAG:Mn and TbAG:Mn,Ce garnets which can be considered as promising luminescent materials for conversion of LED's radiation. Due to the effective energy transfer between TbAG host and activator, Mn2+ ions in TbAG possess the bright orange luminescence in the bands peaked at 595 nm with a lifetime of 0.64 ms which are caused by the 4T16A1 radiative transitions. The simultaneous process of energy transfer is realized in TbAG:Mn,Ce: (i) from Tb3+ to Mn2+ ions; (ii) from Tb3+ cations to Ce3+ ions and then partly to Mn2+ ions through Tb3+ ion sublattice and Ce-Mn dipole-dipole interaction.  相似文献   

4.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

5.
Y3Al5O12:Ce3+, Pr3+ and Y3Al5O12:Ce3+, Tb3+ nano-particles have been synthesized by polymer-assisted sol–gel method. Crystal structure, luminescent properties and energy transfer of the phosphors are analyzed. XRD study of polycrystalline powders shows that all the samples are of YAG phase without impurity. Photoluminescence (PL) emission and excitation spectra illustrate that in YAG:Ce, Pr phosphors, energy transfer occurs mutually between Ce3+ and Pr3+, while in YAG:Ce, Tb systems, only one-way path energy transfer of Tb3+→Ce3+ is observed.  相似文献   

6.
Nanocrystal rods of Eu3+/Tb3+-co-doped ZrO2 were synthesized using a simple chemical precipitation technique. Both ions were successfully doped into the Zr4+ ion site in a mixed structure containing both monoclinic and tetragonal phases. The Eu3+ or Tb3+ singly doped zirconia produced red and green luminescence which are characteristics of Eu3+ and Tb3+ ions, respectively. The co-doped zirconia samples produced blue emission from defect states transitions in the host ZrO2, red and green luminescence from dopant ions giving cool to warm white light emissions. The phosphors were efficiently excited by ultraviolet and near-ultraviolet/blue radiations giving white and red light, respectively. The decay lifetime was found to increase with increasing donor ion concentration contrary to conventional observations reported by previous researchers. Weak quadrupole–quatdrupole multipolar process was responsible for energy transfer from Tb3+ (donor) ion to Eu3+ ion. No energy back-transfer from Eu3+ to Tb3+ ion was observed from the excitation spectra. Temperature-dependent photoluminescence shows the presence of defects at low temperature, but these defects vanished at room temperature and beyond. The Eu3+/Tb3+-co-doped ZrO2 nanocrystal rod is a potential phosphor for white light application using UV as an excitation source. Thermoluminescence measurements show that the inclusion of Tb3+ ion increases trap depths in the host zirconia.  相似文献   

7.
Luminescence and scintillation properties of Y3Al5O12:Ce single crystals grown from the melt by the Czochralski and horizontal directed crystallization methods in various gas media and Y3Al5O12:Ce single-crystal films grown by liquid-phase epitaxy from a melt solution based on a PbO-B2O3 flux have been comparatively analyzed. The strong dependence of scintillation properties of Y3Al5O12:Ce single crystals on their growth conditions and concentrations of YAl antisite defects and vacancy defects has been established. Vacancy defects are involved in Ce3+ ion emission excitation as the centers of intrinsic UV luminescence and trapping centers. It has been shown that Y3Al5O12:Ce single-crystal films are characterized by faster scintillation decay kinetics than single crystals and a lower content of slow components in Ce3+ ion luminescence decay during high-energy excitation due to the absence of YAl antisite defects in them and low concentration of vacancy defects. At the same time, the light yield of Y3Al5O12:Ce single-crystal films is comparable to that of single crystals grown by directed crystallization due to the quenching effect of the Pb2+ ion impurity as a flux component and is slightly lower (∼25%) than the light yield of single crystals grown by the Czochralski method.  相似文献   

8.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

9.
The energies of the ground 4f n levels of tri- and divalent rare-earth ions with respect to the conduction and valence bands of Gd2O2S crystal has been determined. It is shown that the Pr3+, Tb3+, and Eu3+ ions can be luminescence centers in Gd2O2S. The levels of the Nd3+, Dy3+, Er3+, Tm3+, Sm3+, and Ho3+ ions lie in the valence band; therefore, these ions cannot play the role of activators. The ground 4f level of the Ce3+ ion is near the midgap, due to which Ce3+ effectively captures holes from the valence band and electrons from the conduction band and significantly decreases the afterglow level of the Gd2O2S:Pr and Gd2O2S:Tb phosphors.  相似文献   

10.
Powder samples of NaMgPO4 doped with Eu2+ and Ce3+ were prepared and their photoluminescence spectra were systemically studied. Energy transfer from Ce3+ to Eu2+ in NaMgPO4 phosphor was observed by investigating the optical properties from photoluminescence spectra in Eu2+ or Ce3+ singly doped and Eu2+–Ce3+ codoped sodium magnesium orthophosphates, NaMgPO4. The enhancement of UV excitation is attributed to energy transfer from Ce3+ to Eu2+, and Ce3+ plays a role as a sensitizer. Ce3+–Eu2+ codoped NaMgPO4 phosphors in which Eu2+ can be efficiently excited by 390 nm are potential candidates for phosphor-converted LEDs.  相似文献   

11.
Ce3+ and Tb3+ co-doped BaAl2B2O7 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The photoluminescent properties of Ce3+ and Tb3+ co-doped BaAl2B2O7 phosphors were investigated by using the photoluminescence emission and excitation spectra. Under the excitation of near ultraviolet (n-UV) light, BaAl2B2O7:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the f–d transition of Ce3+ ions and green emission bands corresponding to the f–f transition of Tb3+ ions, respectively. Effective energy transfer occurred from Ce3+ to Tb3+ in BaAl2B2O7 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 71%. Furthermore, the concentration quenching and critical distance of BaAl2B2O7:Ce3+,Tb3+ phosphors were also discussed. The energy transfer from Ce3+ to Tb3+ in BaAl2B2O7 host was demonstrated to be resonant type via a dipole–dipole interaction mechanism with the energy transfer critical distance of 16.13 Å.  相似文献   

12.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

13.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

14.
Orange-emissive Ce3+/Eu2+ co-doped Sr3Al2O5Cl2 phosphors were synthesized by a solid-state reaction. The large overlap between the emission spectrum of blue Sr3Al2O5Cl2:Ce3+ and the excitation spectrum of orange Sr3Al2O5Cl2:Eu2+, and the shortening trend in lifetime of Ce3+ donors with increasing Eu2+ concentration in Sr3Al2O5Cl2:Ce3+, Eu2+ provide the strong evidence of energy transfer from Ce3+ to Eu2+ ions. It supports that the orange emission intensity of the optimal co-doped phosphor is 1.5 times stronger than that of single Eu2+-doped one. The Sr3Al2O5Cl2:Ce3+, Eu2+ phosphor is a promising orange-emitting phosphor for warm-white-light-emitting diode because of its effective excitation in the near ultraviolet range.  相似文献   

15.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

16.
Y2-xGdxO3:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed laser deposition. Films grown under different deposition conditions have been characterized using microstructural and luminescence measurements. The crystallinity, surface morphology and photoluminescence (PL) of the films are highly dependent on the amount of Gd present. The photoluminescence (PL) brightness data obtained from Y2-xGdxO3:Eu3+ films grown under optimized conditions have indicated that Al2O3(0001) is one of the most promising substrates for the growth of high-quality Y2-xGdxO3:Eu3+ thin-film red phosphors. In particular, the incorporation of Gd into the Y2O3 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y1.35Gd0.60Eu0.05O3, whose brightness was increased by a factor of 3.1 in comparison with that of Y2O3:Eu3+ films. This phosphor may be promising for application in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

17.
The luminescent properties of Eu3+ and Eu2+ ions in sodium pyrophosphate, Na4P2O7, have been studied. The excitation spectrum of the Eu3+ emission in Na4P2O7 consists of several sets of bands in the range 280–535 nm due to 4f–4f transitions of Eu3+ ions and a broad band with a maximum at about 240 nm interpreted to be due to a charge transfer (CT) transition from oxygen 2p states to empty states of the Eu3+ 4f6-configuration. Although the CT band energy is large enough, the quantum efficiency (η) of the Eu3+ emission in Na4P2O7 under CT excitation was estimated to be very low (η ≤ 0.01). In terms of a configurational coordinate model, this fact is interpreted as a result of the high efficiency of a radiationless relaxation from the CT state to the 7F0 ground state of Eu3+ ions occupying sodium sites in Na4P2O7. A strong reducing agent is required in order to stabilize Eu2+ ions in Na4P2O7 during the synthesis. Several nonequivalent Eu2+ luminescence centers in Na4P2O7 were found.  相似文献   

18.
Undoped and Eu3+ doped BaTa2O6 phosphors were synthesized via solid state reaction method and characterized by using XRD, SEM-EDS and photoluminescence (PL) analyses. The XRD results revealed that the crystal structure of BaTa2O6 allowed up to 10 mol% levels of Eu3+ ions due to the TTB characteristic network of adjacent octahedrals. SEM-EDS analyses confirmed the formation of BaTa2O6 structure and EuTaO4 secondary phase. BaTa2O6:Eu3+ phosphors exhibited orange and red emissions at 592.2 nm and 615.7 nm in the visible region respectively. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of the BaTa2O6:Eu3+ phosphors that excited at λ ex = 400 nm ranged from orangish-red to pinkish-red depending on increasing Eu3+ concentration.  相似文献   

19.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

20.
Polycrystalline KCaSO4Cl:Eu, Dy, KCaSO4Cl:Ce, Dy and KCaSO4Cl:Ce, Mn phosphors prepared by a solid state diffusion method have been studied for its photoluminescence (PL) characteristics. The presence of two overlapping bands at around 400 and 450 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound occupying two different lattice sites. The effects of co-doping on the photoluminescence (PL) characteristics of KCaSO4Cl:Eu or Ce phosphors have been studied. The decrease in peak intensity of the phosphor on co-doping it with Dy gives an insight into the emission mechanism of the phosphors, which involves energy transfer from Eu2+→Dy3+, Ce3+→Dy3+ and Ce3+→Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号