首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper summarizes studies on the redox behavior of synthetic models for the [FeFe]-hydrogenases, consisting of diiron dithiolato carbonyl complexes bearing the amine cofactor and its N-benzyl derivative. Of specific interest are the causes of the low reactivity of oxidized models toward H(2), which contrasts with the high activity of these enzymes for H(2) oxidation. The redox and acid-base properties of the model complexes [Fe(2)[(SCH(2))(2)NR](CO)(3)(dppv)(PMe(3))](+) ([2](+) for R = H and [2'](+) for R = CH(2)C(6)H(5), dppv = cis-1,2-bis(diphenylphosphino)ethylene)) indicate that addition of H(2) followed by deprotonation are (i) endothermic for the mixed valence (Fe(II)Fe(I)) state and (ii) exothermic for the diferrous (Fe(II)Fe(II)) state. The diferrous state is shown to be unstable with respect to coordination of the amine to Fe, a derivative of which was characterized crystallographically. The redox and acid-base properties for the mixed valence models differ strongly for those containing the amine cofactor versus those derived from propanedithiolate. Protonation of [2'](+) induces disproportionation to a 1:1 mixture of the ammonium [H2'](+) (Fe(I)Fe(I)) and the dication [2'](2+) (Fe(II)Fe(II)). This effect is consistent with substantial enhancement of the basicity of the amine in the Fe(I)Fe(I) state vs the Fe(II)Fe(I) state. The Fe(I)Fe(I) ammonium compounds are rapid and efficient H-atom donors toward the nitroxyl compound TEMPO. The atom transfer is proposed to proceed via the hydride. Collectively, the results suggest that proton-coupled electron-transfer pathways should be considered for H(2) activation by the [FeFe]-hydrogenases.  相似文献   

2.
Model compounds have been found to structurally mimic the catalytic hydrogen-producing active site of Fe-Fe hydrogenases and are being explored as functional models. The time-dependent behavior of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) and Fe(2)(μ-S(2)C(2)H(4))(CO)(6) is reviewed and new ultrafast UV- and visible-excitation/IR-probe measurements of the carbonyl stretching region are presented. Ground-state and excited-state electronic and vibrational properties of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) were studied with density functional theory (DFT) calculations. For Fe(2)(μ-S(2)C(3)H(6))(CO)(6) excited with 266 nm, long-lived signals (τ = 3.7 ± 0.26 μs) are assigned to loss of a CO ligand. For 355 and 532 nm excitation, short-lived (τ = 150 ± 17 ps) bands are observed in addition to CO-loss product. Short-lived transient absorption intensities are smaller for 355 nm and much larger for 532 nm excitation and are assigned to a short-lived photoproduct resulting from excited electronic state structural reorganization of the Fe-Fe bond. Because these molecules are tethered by bridging disulfur ligands, this extended di-iron bond relaxes during the excited state decay. Interestingly, and perhaps fortuitously, the time-dependent DFT-optimized exited-state geometry of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) with a semibridging CO is reminiscent of the geometry of the Fe(2)S(2) subcluster of the active site observed in Fe-Fe hydrogenase X-ray crystal structures. We suggest these wavelength-dependent excitation dynamics could significantly alter potential mechanisms for light-driven catalysis.  相似文献   

3.
The mechanism for inhibition of [FeFe]-hydrogenases by formaldehyde is examined with model complexes. Key findings: (i) CH2 donated by formaldehyde covalently link Fe and the amine cofactor, blocking the active site and (ii) the resulting Fe-alkyl is a versatile electrophilic alkylating agent. Solutions of Fe2[(μ-SCH2)2NH](CO)4(PMe3)2 (1) react with a mixture of HBF4 and CH2O to give three isomers of [Fe2[(μ-SCH2)2NCH2](CO)4(PMe3)2]+ ([2]+). X-ray crystallography verified the NCH2Fe linkage to an octahedral Fe(ii) site. Although [2]+ is stereochemically rigid on the NMR timescale, spin-saturation transfer experiments implicate reversible dissociation of the Fe–CH2 bond, allowing interchange of all three diastereoisomers. Using 13CH2O, the methylenation begins with formation of [Fe2[(μ-SCH2)2N13CH2OH](CO)4(PMe3)2]+. Protonation converts this hydroxymethyl derivative to [2]+, concomitant with 13C-labelling of all three methylene groups. The Fe–CH2N bond in [2]+ is electrophilic: PPh3, hydroxide, and hydride give, respectively, the phosphonium [Fe2[(μ-SCH2)2NCH2PPh3](CO)4(PMe3)2]+, 1, and the methylamine Fe2[(μ-SCH2)2NCH3](CO)4(PMe3)2. The reaction of [Fe2[(μ-SCH2)2NH](CN)2(CO)4]2− with CH2O/HBF4 gave [Fe2[(μ-SCH2)2NCH2CN](CN)(CO)5] ([4]), the result of reductive elimination from [Fe2[(μ-SCH2)2NCH2](CN)2(CO)4]. The phosphine derivative [Fe2[(μ-SCH2)2NCH2CN](CN)(CO)4(PPh3)] ([5]) was characterized crystallographically.

The mechanism for inhibition of [FeFe]-hydrogenases by formaldehyde is examined with model complexes.  相似文献   

4.
Treatment of [(μ-SCH2)2NPh]Fe2(CO)6 (A) with PPh3 or PPh2H in the presence of the decarbonylating agent Me3NO·2H2O afforded complexes [(μ-SCH2)2NPh]Fe2(CO)5(PPh3) (1) and [(μ-SCH2)2NPh]Fe2(CO)5(PPh2H) (2) in 87% and 74% yields, respectively. Complexes 1 and 2 were characterized by elemental analysis and various spectroscopic techniques. The molecular structures of 1 and 2 were further determined by X-ray crystallography. In both cases, the monophosphine ligand resides in an axial position of the square-pyramidal Fe atom and trans to the benzene ring of the azadithiolate ligand, in order to minimize steric repulsion. On the basis of electrochemical studies, all these complexes were found to catalyze proton reduction to H2 in the presence of acetic acid.  相似文献   

5.
In this work DFT has been used to characterize model complexes structurally related to the CO-inhibited form (Hox-CO) of [FeFe]-hydrogenases.The investigation of a recently synthesized diiron complex ([Fe2{MeSCH2C(Me)(CH2S)2}(CN)2(CO)4], [M. Razavet, S.J. Borg, S.J. George, S.P. Best, S.A. Fairhurst, C.J. Pickett, Chem. Commun. 2002, 700-701]) that closely reproduces most features of the inhibited enzyme cofactor, led to the conclusion that the computation of DFT energy differences, as well as the comparison between computed and experimental IR and EPR spectra, does not allow to confidently distinguish among isomers differing for the position of CO and CN ligands, an issue which is relevant not only to fully understand the mechanism of CO-mediated inhibition of the enzyme, but more generally to further understand the factors affecting substrates coordination to the enzyme active site.The latter observation prompted us to probe the effect of the electronic properties of ligands on the structural features of a series of [Fe2(SCH2XCH2S)(CN)2(CO)3(L)]n complexes related to the Hox-CO form of the enzyme but differing for the nature of L (CO, (CH3)2S, CH3S, CH3O and F) and X (CH2, NH and O). Results revealed that the electronic properties of ligands, as well as the nature of the chelating group bridging the two iron atoms, can affect the coordination geometry of the distal metal center. In particular, it turned out that the inclusion of hard ligands in the Fe coordination sphere could be a viable strategy to selectively favour isomers featuring two CO groups trans to each other. On the other hand, the substitution of propanedithiolate with a di(thiomethyl)amine residue led to the selective stabilization of structures featuring a CN ligand in trans to the μ-CO group, thanks to the formation of an intramolecular hydrogen bond. The relevance of these DFT results for the design of novel biomimetic models of the CO-inhibited [FeFe]-hydrogenases active site is discussed.  相似文献   

6.
Two N-functionally substituted diiron azadithiolate complexes, [(µ-SCH2)2NCH2CH2OC(O)C6H4I-p]Fe2(CO)6 (1) and {[(µ-SCH2)2NCH2CH2OC(O)C6H4I-p]Fe2(CO)5Ph2PCH}2 (2) as models for the active site of [FeFe] hydrogenases, have been prepared and fully characterized. Complex 1 was prepared by the reaction of [(µ-SCH2)2NCH2CH2OH]Fe2(CO)6 with p-iodobenzoic acid in the presence of 4-dimethylaminopyridine (DMAP) and N,N′-dicyclohexylcarbodiimide (DCC) in 78% yield. Further treatment of 1 with 1 equiv. of Me3NO?·?2H2O followed by 0.5 equiv. of trans-1,2-bis(diphenylphosphino)ethylene (dppe) affords 2 in 60% yield. The new complexes 1 and 2 were characterized by IR and 1H (13C, 31P) NMR spectroscopic techniques and their molecular structures were confirmed by X-ray diffraction analysis. The molecular structure of 1 has two conformational isomers, in one isomer its N-functional substituent is axial to its bridged nitrogen and in the other isomer its N-functional substituent is equatorial. The crystal structure of 2 revealed that its N-functional substituents are equatorial to its nitrogens and dppe occupies the two apical positions of the square-pyramidal irons.  相似文献   

7.
Hydrogenases catalyze the interconversion of protons and hydrogen according to the reversible reaction: 2H(+) + 2e(-) ? H(2) while using only the earth-abundant metals nickel and/or iron for catalysis. Due to their high activity for proton reduction and the technological significance of the H(+)/H(2) half reaction, it is important to characterize the catalytic activity of [FeFe]-hydrogenases using both biochemical and electrochemical techniques. Following a detailed electrochemical and photoelectrochemical study of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaHydA), we now report electrochemical and single-molecule imaging studies carried out on a catalytically active hydrogenase preparation. The enzyme CaHydA, a homologue (70% identity) of the [FeFe]-hydrogenase from Clostridium pasteurianum , CpI, was adsorbed to a negatively charged, self-assembled monolayer (SAM) for investigation by electrochemical scanning tunneling microscopy (EC-STM) techniques and macroscopic electrochemical measurements. The EC-STM imaging revealed uniform surface coverage with sufficient stability to undergo repeated scanning with a STM tip as well as other electrochemical investigations. Cyclic voltammetry yielded a characteristic cathodic hydrogen production signal when the potential was scanned sufficiently negative. The direct observation of the single enzyme distribution on the Au-SAM surface coupled with macroscopic electrochemical measurements obtained from the same electrode allowed the evaluation of a turnover frequency (TOF) as a function of potential for single [FeFe]-hydrogenase molecules.  相似文献   

8.
Using Raman, terahertz (THz), and mid-infrared (IR) spectroscopies, the vibrational spectra of two chromophore models of hydrogen-producing [FeFe]-hydrogenase, Fe2(μ-S2C3H6)(CO)6 and Fe2(μ-S2C2H4)(CO)6, have been assigned. The combination of absorption and scattering techniques, along with DFT calculations, allows for assignments to be made without traditional isotopic substitution methods.  相似文献   

9.
Substitution of carbonyl ligands of the hydrogenase model complex [Fe2(μ-SeCH2CH(Me)CH2Se-μ)(CO)6] ( A ), by 1,1′-bis (diphenylphosphino)ferrocene (dppf), 1,2-bis (diphenylphosphino)benzene (dppbz) or 1,2-bis (diphenylphosphino)acetylene (dppac) is investigated. It is found that the reaction product depends on the diphosphine used. In the case of dppf, the product is an intramolecular bridged disubstituted complex [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)4{μ,κ11(P,P)-dppf}] ( 1 ), while the dppac-reaction produces an intermolecular bridged tetra-iron model [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)5]2{μ,κ11(P,P)-dppac} ( 2 ). However, the dppbz-reaction gives [Fe2{μ-SeCH2CH(Me)CH2Se-μ}(CO)42(P,P)-dppbz}] ( 3 ) in which the dppbz ligand is bonded to one Fe atom in a chelated manner. The newly prepared complexes ( 1 – 3 ) have been characterized by elemental analysis, IR, 1H-, 13C{H}-, 31P{H}-, 77Se{H}-NMR spectroscopy and X-ray structure determination. The electrochemical behavior of 2 and 3 , in absence and presence of acid, is described by cyclic voltammetric measurements in CH2Cl2.  相似文献   

10.
Ultraviolet (UV) photolysis of (mu-S(CH 2) 3S)Fe 2(CO) 6 ( 1), a model compound of the Fe-hydrogenase enzyme system, has been carried out. When ultrafast UV-pump infrared (IR)-probe spectroscopy, steady-state Fourier transform IR spectroscopic methods, and density functional theory simulations are employed, it has been determined that irradiation of 1 in an alkane solution at 350 nm leads to the formation of two isomers of the 16-electron complex (mu-S(CH 2) 3S)Fe 2(CO) 5 within 50 ps with evidence of a weakly associated solvent adduct complex. 1 is subsequently recovered on timescales covering several minutes. These studies constitute the first attempt to study the photochemistry and reactivity of these enzyme active site models in solution following carbonyl ligand photolysis.  相似文献   

11.
The synthesis and characterisation of two diiron hexacarbonyl complexes [Fe2(SXS)(CO)6], 1 (SXS = ((?SCH2)2C(CH3)CH2OCOFc, Fc = ferrocenyl group) and 2 (SXS = (?SCH2CH2NHCOFc)2), were described. By using intramolecularly integrated ferrocenyl group(s) in the complexes as an internal standard, the nature of two stepwise one-electron processes of the complexes coupled with a chemical reaction was clearly demonstrated. Examining how the reduction transformed into sole one-electron process with both increasing scanning rate under Ar/CO atmosphere and lowering temperature indicated conclusively that the reduction of both complexes couples to a chemical reaction which involves CO-loss.  相似文献   

12.
[FeFe]-hydrogenases are efficient natural catalysts that can be exploited for hydrogen production. Immobilization of the recombinant [FeFe]-hydrogenase CaHydA was achieved for the first time on an anatase TiO(2) electrode. The enzyme is able to interact and exchange electrons with the electrode and to catalyze hydrogen production with an efficiency of 70%.  相似文献   

13.
In this work, we employ density functional theory to assign vibrational signatures of [FeFe]-hydrogenase intermediates to molecular structures. For this purpose, we perform an exhaustive analysis of structures and harmonic vibrations of a series of CN and CO containing model clusters of the [FeFe]-hydrogenase enzyme active site considering also different charges, counterions, and solvents. The pure density functional BP86 in combination with a triple-ζ polarized basis set produce reliable molecular structures as well as harmonic vibrations. Calculated CN and CO stretching vibrations are analyzed separately. Scaled vibrational frequencies are then applied to assign intermediates in [FeFe]-hydrogenase's reaction cycle. The results nicely complement the previous studies of Darensbourg and Hall, and Zilberman et al. The infrared spectrum of the H(ox) form is in very good agreement with the calculated spectrum of the Fe(I)Fe(II) model complex featuring a free coordination site at the distal Fe atom, as well as, with the calculated spectra of the complexes in which H(2) or H(2)O are coordinated at this site. The spectrum of H(red) measured from Desulfovibrio desulfuricans is compatible with a mixture of a Fe(I)Fe(I) species with all terminal COs, and a Fe(I)Fe(I) species with protonated dtma ligand, while the spectrum of H(red) recently measured from Chlamydomonas reinhardtii is compatible with a mixture of a Fe(I)Fe(I) species with a bridged CO, and a Fe(II)Fe(II) species with a terminal hydride bound to the Fe atom.  相似文献   

14.
A series of N-functionalized diiron azadithiolate complexes, [(µ-SCH2)2NCH2CO2Me]Fe2(CO)5?L [L?=?CO (1); PPh3 (2); Ph2PCH2PPh2 (3)], as active site models of [FeFe]-hydrogenases has been prepared and characterized. While 1 was prepared by a sequential reaction of (µ-HS)2Fe2(CO)6 with two equiv. of aqueous HCHO, followed by treatment of (µ-HOCH2S)2Fe2(CO)6 with one equiv. of H2NCH2CO2Me in 46% yield; 2 and 3 were prepared by a carbonyl substitution reaction of 1 with PPh3 or Ph2PCH2PPh2 in the presence of Me3NO?·?2H2O in 90% and 85% yields, respectively. The crystal structures of 1 and 2 revealed that the substituent attached to the bridgehead nitrogen occupies an equatorial position and the PPh3 ligand resides in an axial position of the square pyramid of Fe2.  相似文献   

15.
Studies of the catalytic properties of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans by protein film voltammetry, under a H2 atmosphere, reveal and establish a variety of interesting properties not observed or measured quantitatively with other techniques. The catalytic bias (inherent ability to oxidize hydrogen vs reduce protons) is quantified over a wide pH range: the enzyme is proficient at both H2 oxidation (from pH > 6) and H2 production (pH < 6). Hydrogen production is inhibited by H2, but the effect is much smaller than observed for [NiFe]-hydrogenases from Allochromatium vinosum or Desulfovibrio fructosovorans. Under anaerobic conditions and positive potentials, the [FeFe]-hydrogenase is oxidized to an inactive form, inert toward reaction with CO and O2, that rapidly reactivates upon one-electron reduction under 1 bar of H2. The potential dependence of this interconversion shows that the oxidized inactive form exists in two pH-interconvertible states with pK(ox) = 5.9. Studies of the CO-inhibited enzyme under H2 reveals a strong enhancement of the rate of activation by white light at -109 mV (monitoring H2 oxidation) that is absent at low potential (-540 mV, monitoring H+ reduction), thus demonstrating photolability that is dependent upon the oxidation state.  相似文献   

16.
The one-electron oxidations of a series of diiron(I) dithiolato carbonyls were examined to evaluate the factors that affect the oxidation state assignments, structures, and reactivity of these low-molecular weight models for the H ox state of the [FeFe]-hydrogenases. The propanedithiolates Fe 2(S 2C 3H 6)(CO) 3(L)(dppv) (L = CO, PMe 3, P i-Pr 3) oxidize at potentials approximately 180 mV milder than the related ethanedithiolates ( Angew. Chem., Int. Ed. 2007, 46, 6152). The steric clash between the central methylene of the propanedithiolate and the phosphine favors the rotated structure, which forms upon oxidation. Electron Paramagnetic Resonance (EPR) spectra for the mixed-valence cations indicate that the unpaired electron is localized on the Fe(CO)(dppv) center in both [Fe 2(S 2C 3H 6)(CO) 4(dppv)]BF 4 and [Fe 2(S 2C 3H 6)(CO) 3(PMe 3)(dppv)]BF 4, as seen previously for the ethanedithiolate [Fe 2(S 2C 2H 4)(CO) 3(PMe 3)(dppv)]BF 4. For [Fe 2(S 2C n H 2 n )(CO) 3(P i-Pr 3)(dppv)]BF 4; however, the spin is localized on the Fe(CO) 2(P i-Pr 3) center, although the Fe(CO)(dppv) site is rotated in the crystalline state. IR and EPR spectra, as well as redox potentials and density-functional theory (DFT) calculations, suggest that the Fe(CO) 2(P i-Pr 3) site is rotated in solution, driven by steric factors. Analysis of the DFT-computed partial atomic charges for the mixed-valence species shows that the Fe atom featuring a vacant apical coordination position is an electrophilic Fe(I) center. One-electron oxidation of [Fe 2(S 2C 2H 4)(CN)(CO) 3(dppv)] (-) resulted in 2e oxidation of 0.5 equiv to give the mu-cyano derivative [Fe (I) 2(S 2C 2H 4)(CO) 3(dppv)](mu-CN)[Fe (II) 2(S 2C 2H 4)(mu-CO)(CO) 2(CN)(dppv)], which was characterized spectroscopically.  相似文献   

17.
Ultrafast two-dimensional infrared (2D) spectroscopy has been applied to study the structure and vibrational dynamics of (mu-S(CH2)3S)Fe2(CO)6, a model compound of the active site of the [FeFe]-hydrogenase enzyme system. Comparison of 2D-IR spectra of (mu-S(CH2)3S)Fe2(CO)6 with density functional theory calculations has determined that the solution-phase structure of this molecule is similar to that observed in the crystalline phase and in good agreement with gas-phase simulations. In addition, vibrational coupling and rapid (<5 ps) solvent-mediated equilibration of energy between vibrationally excited states of the carbonyl ligands of the di-iron-based active site model are observed prior to slower (approximately 100 ps) relaxation to the ground state. These dynamics are shown to be solvent-dependent and form a basis for the future determination of the vibrational interactions between active site and protein.  相似文献   

18.
19.
First-principles density functional theory calculations of synthetic models of [FeFe]-hydrogenase are used to show that the theoretical methods reproduce observed structures and infrared spectra to high accuracy. The accuracy is demonstrated for synthetic Fe(I)Fe(I) models ([(mu-PDT)Fe2(CO)6] and [(CN)(CO)2(mu-PDT)Fe2(CO)2(CN)]2-), for which we show that their infrared spectra are sensitive to the geometric arrangement of their CO/CN ligands and can be used in conjunction with quantum-mechanical total energies to predict the correct ligand geometry. We then analyze and predict the structure of mixed-valence Fe(II)Fe(I) models ([(mu-MeSCH2C(Me)(CH2S)2)Fe2(CO)4(CN)2]x-). These capabilities promise to distinguish among the various structural isomers of the enzyme's active site which are consistent with the limited accuracy of the X-ray observations.  相似文献   

20.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号