首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical conductivity, thermoelectric power, and dielectric properties of polyaniline doped by boric acid (PANI‐B) have been investigated. The room temperature electrical conductivity of PANI‐B was found to be 1.02 × 10?4 S cm?1. The thermoelectric power factor for the polymer was found to be 0.64 µW m?1 K?2. The optical band gap of the PANI‐B was determined by optical absorption method, and the PANI‐B has a direct optical band gap of 3.71 eV. The alternating charge transport mechanism of the polymer is based on the correlated barrier hopping (CBH) model. The imaginary part of the dielectric modulus for the PANI‐B suggests a temperature dependent dielectric relaxation mechanism. Electrical conductivity and thermoelectric power results indicate that the PANI‐B is an organic semiconductor with thermally activated conduction mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Single‐walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X‐ray diffraction measurements confirmed that solution processing and strong π–π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in‐plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×103 S cm?1 and 217 μW m?1 K?2, respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm?2 K?1 was obtained, which is superior to most reported results obtained in organic thermoelectric modules.  相似文献   

3.
Composites comprising biobased poly(lactic acid) (PLA) and polyethylene (Bio-PE) were reinforced with multi-walled carbon nanotubes (MWCNTs). These nanocomposites were analyzed using space-resolved thermal analysis (TA) integrated with atomic force microscopy. The deflection temperature, which indicates thermal-induced expansion and thermal transitions of the composite, was monitored by nanoscale TA (nanoTA) utilizing the displacement of a cantilever in contact with the material. Results were compared to bulk electrical, mechanical and thermal properties. Electrical conductivity was detected at lower MWCNT loadings for PLA than for Bio-PE (at 2.5 vs. 5 mass%). Maximal electrical conductivity of 27 S m?1 for PLA and 0.7 S m?1 for Bio-PE-based samples was reached at 10 mass% MWCNT loading. Tensile behavior combined with thermogravimetric analysis indicated strong MWCNT–Bio-PE interactions, in contrast to PLA. The glass transition and melting temperature measured by differential scanning calorimetry (DSC) were not changed by the increase in MWCNT loading. Increased deflection temperature was registered by bulk heat deflection measurements on Bio-PE, but not for PLA. The thermal transitions obtained by nanoTA at the nanoscale were in the same temperature range as the first transitions observed upon temperature ramp in DSC (e.g., glass transition and melt temperatures of PLA and Bio-PE, respectively). Remarkably, thermal expansion was detected by nanoTA for PLA- and Bio-PE-based composites below electrical percolation threshold as well as an increase in PLA softening temperature. Space-resolved nanothermal analysis revealed thermal phenomena that are otherwise overlooked when bulk methods are applied.  相似文献   

4.
The dimensional stability of adsorbent beads subjected to varying temperature conditions must be understood to assess the effect of thermal cycling on both the adsorbent and the structure that contains it. Most of the literature on the coefficient of thermal expansion (CTE) of adsorbents relates to zeolite crystals or clusters of crystals with application to membranes. Such crystals or powder materials have been shown to exhibit both positive and negative volume expansion coefficients depending upon the temperature range. This duality in the CTE with increasing temperature and the large variation in the CTE magnitude for a given zeolite structure suggest that the dimensional stability of zeolite crystals under varying thermal conditions is not likely a good indicator of the thermal stability of agglomerated zeolites. In this study, a method has been developed and applied to measure the CTE of activated alumina and 13X molecular sieve adsorbent beads. A McBain gravimetric microbalance was modified in a simple manner to be used as a dilatometer. The method was validated by measuring the CTE of a 316 stainless steel rod and showing that the measured CTE of this study agreed with the published CTE within 3.3 %. Average CTEs for alumina and 13X adsorbents were determined as 4.88 × 10?6 and 2.96 × 10?6 mm/mm/ °C, respectively for the range of temperature 20–400 °C.  相似文献   

5.
Radiation induced acid doping of PANI to generate electrical conductivity was achieved by radiation induced HCl release from chlorinated-polyisoprene (ClPIP). Blends of PANI with ClPIP were prepared by mechanical mixing/grinding in the composition range of 9–43% ClPIP by weight and pelletized under 10 t press. The pellets were irradiated in 60Co Gammacell in air at room temperature to doses up to 300 kGy. The maximum electrical conductivity increase was observed for the blend PANI43 which changed from 10?10 to 10?4 S cm?1 when it was irradiated to 300 kGy dose. Radiation induced changes on the blends were also studied by UV–vis spectroscopy using reflection technique and FTIR spectroscopy. The broad absorption band in the visible range (630 nm) increased by increasing irradiation dose. The band (1110 cm?1) in the IR spectra which is indicative of conductivity showed linear correlation with irradiation dose.  相似文献   

6.
Polyaniline (PANI)‐montmorillonite (MMT) nanocomposites were prepared by direct intercalation of aniline molecules into MMT galleries, followed by in situ polymerization within the nano‐interlamellar spaces under solvent‐free conditions. The basal spacing of aniline‐intercalated MMT increased gradually up to 1.5 nm with increasing amounts of aniline loaded. This result suggests that aniline molecules were adsorbed by MMT clay and that intercalated aniline likely located perpendicular to the silicate sheets. After polymerization, X‐ray diffraction and Fourier transform infrared analyses confirmed the successful synthesis of PANI chains between the MMT nano‐interlayers. The scanning electron microscopy images indicated that the surface morphologies of PANI–MMTs were strongly different depending on the PANI content. The electrical conductivities of PANI nanocomposite particles in pressed pellets ranged in the order of between 10?3 and 10?2 S/cm. UV–vis spectroscopy and doping level measurement were further used to discuss the conductivities of nanocomposites. The thermal stabilities of PANI–MMT nanocomposites were examined by using thermogravimetric‐differential thermal analysis and derivative thermogravimetric analysis, and both analyses consequently demonstrated the improved thermal stabilities of the PANI chains in the nanocomposites as compared to pure PANI. The thermal stabilities of resulting nanocomposites were strongly related to the PANI content, which increased as the PANI content decreased in the nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2705–2714, 2005  相似文献   

7.
Characterization of thermal transport in nanoscale thin films with very low thermal conductivity (<1 W m?1 K?1) is challenging due to the difficulties in accurately measuring spatial variations in temperature field as well as the heat losses. In this paper, we present a new experimental technique involving freestanding nanofabricated specimens that are anchored at the ends, while the entire chip is heated by a macroscopic heater. The unique aspect of this technique is to remove uncertainty in measurement of convective heat transfer, which can be of the same magnitude as through the specimen in a low conductivity material. Spatial mapping of temperature field as well as the natural convective heat transfer coefficient allows us to calculate the thermal conductivity of the specimen using an energy balance modeling approach. The technique is demonstrated on thermally grown silicon oxide and low dielectric constant carbon-doped oxide films. The thermal conductivity of 400 nm silicon dioxide films was found to be 1.2 W m?1 K?1, and is in good agreement with the literature. Experimental results for 200 nm thin low dielectric constant oxide films demonstrate that the model is also capable of accurately determining the thermal conductivity for materials with values <1 W m?1 K?1.  相似文献   

8.
The polyaniline dispersions stabilized with poly(N-vinylpyrrolidone) (PANI/PVP) were synthesized by oxidative polymerization with different mass ratios of PANI and PVP and different molar concentrations of the components in the polymerization mixture. The composite powders prepared from colloidal PANI/PVP dispersions were characterized by thermogravimetry and differential thermal analysis. The change in the ratio of PANI and PVP as well as the starting molar concentrations of aniline hydrochloride and oxidant has influence on the resulting properties of the dispersions. Concerning the doping, the results show that PANI/PVP powders are stable up to approximately 160 °C. Degradation of polymer chains starts at temperatures above 250 °C. The PANI/PVP composite powders with lower content of PANI exhibit slightly higher thermal stability. Further, colloidal PANI/PVP dispersions were screen-printed on aluminum foil for infrared spectroscopic characterization and on poly(ethylene terephthalate) foil for electrical measurements. The sheet resistance of printed layers measured by two-point probe was of the order of tens to thousands of kΩ sq?1. The influence of both the change in the composition and the drying temperature is discussed.  相似文献   

9.
This work focuses on the thermal characterization of a calcium silicate-based material synthesized with different solid wastes (chamotte and marble) for use as thermal insulation material. Thermal and structural changes occurring during heating were accompanied by differential thermal analysis, thermogravimetric analysis, dilatometric analysis, open photoacoustic cell technique, X-ray diffraction (XRD), and scanning electron microscopy. An endothermic event at 823.2 °C was interpreted as decomposition of carbonates. An exothermic event around 900 °C is associated with the crystallization of calcium silicate phases mainly wollastonite. The themophysical properties of the calcium silicate-based material (thermal diffusivity, thermal conductivity, specific thermal capacity, and thermal effusivity) are influenced by the synthesis temperature. The thermal analysis results agree well with the XRD. The calcium silicate pieces presented low thermal conductivity values (0.227?0.376 W m?1 K?1). These results suggest that the calcium silicate-based materials produced essentially with chamotte and marble wastes has high potential to be used as thermal insulation construction material.  相似文献   

10.
通过氧化偶联聚合的方法我们制备了一种新型电活性聚芳醚砜,这种聚合物主链上含有苯基封端的苯胺四聚体齐聚物单元。我们通红外、核磁和XRD对其结构进行了表征。在1.0M的硫酸水溶液介质中我们对其电活性进行了研究,聚合物展现出两对氧化还原峰。此外,我们使用TGA测试手段对其热稳定性也做了研究。在室温质子酸掺杂的条件下聚合物的导电率为1.37 × 10-7 S·cm-1。  相似文献   

11.
Form-stable phase change materials (PCMs) with high thermal conductivity are essential for thermal energy storage systems, which in turn are indispensible in solar thermal energy applications and efficient use of energy. In this paper, a new palmitic acid (PA)/polyaniline (PANI) form-stable PCMs were prepared by surface polymerization. The highest loading of PA in the form-stable PCMs was 80 mass% with the phase change enthalpy (ΔH melting) of 175 J g?1. Copper nanowires (Cu NWs) were introduced to the form-stable PCM by mixing the Cu NWs with PA and ethanol prior to the emulsifying of PA in surfactant solution. The Cu NWs would remain intact in case the ethanol was eliminated before the PA/Cu NWs mixture was mixed with surfactant solution. Otherwise, the Cu NWs would be partially oxidized under the attack of ethanol and ammonium persulfate. The ΔH melting of the form-stable PCMs containing Cu NWs decreased linearly with the increasing of Cu NWs loading. The ΔH melting of the form-stable PCMs doped with 11.2 mass% Cu NWs was 149 J g?1. The thermal conductivity of the form-stable PCMs could be effectively improved by Cu NWs. By adding 11.2 mass% Cu NWs, the thermal conductivity of the form-stable PCM could attain 0.455 W m?1 K?1.  相似文献   

12.
Electrical impedance spectroscopy was used to measure the conductivity of solid polymer electrolytes. From the impedance study, the highest ionic conductivity of solid polymer electrolytes based on carboxyl methylcellulose as polymer host and oleic acid as the doping salt, prepared by the solution casting method at room temperature, σr.t, is 2.11 × 10?5 S cm?1 for the sample containing 20 wt.% of oleic acid. Transference number measurement was performed to correlate the diffusion phenomena to the conductivity behavior of carboxyl methylcellulose-oleic acid solid polymer electrolytes. From the transference number measurement study, the conduction species carrier of the cation (+) is higher than that of the anion (?). Thus, the results proved that the samples are proton-conducting solid polymer electrolytes.  相似文献   

13.
Reduced graphene oxide/sulfur/polyaniline (referred to RGO/S/PANI) composite was self-assembled through in situ synthesis and used to investigate the electrochemical properties of lithium/sulfur cells. The RGO/S/PANI composite possessed 809.3/801.9 mAh g?1 of initial charge/discharge capacities, higher than 588.3/588.2 mAh g?1 for reduced graphene oxide/sulfur (referred to RGO/S) and 681.4/669.9 mAh g?1 for sulfur/polyaniline (referred to S/PANI) at similar conditions. The RGO/S/PANI composite obtained 400 mAh g?1 at 2 C and good reversible capacities of 605.5 and 600.8 mAh g?1 at 100th charge/discharge cycle at 0.1 C, in comparison with low electrochemical performance of RGO/S and S/PANI. The improved properties could be attributed to the collaboration of RGO and PANI. Co-generation of RGO and sulfur acted as seeds for their depositions, stimulated their uniform distributions, and restricted the agglomeration of sulfur particles in situ synthesis. Polyaniline coated RGO/S and stabilized the nanostructure of RGO/S/PANI in repeated charge/discharge cycles. In addition, RGO and PANI provided many electron channels to enhance sulfur conductivity and sufficient void space for sulfur swelling during charge/discharge cycles.  相似文献   

14.
A novel way to prepare an electroactive polyamide (alternating copolymer) is presented. Well‐defined molecular structure polyamide with amine‐capped aniline pentamer in the main chain was obtained. The copolymer has been characterized by Fourier‐transform infrared (FTIR) spectra, 1H NMR, elemental analysis (EA), and gel permeation chromatography (GPC). Its chemical oxidation process was studied by UV–vis spectra and the electrochemical analysis was checked by cyclic voltammetry (CV). It was found that the obtained electroactive polyamide shows three redox peaks in the cyclic voltammetry, which is different from the polyaniline. Moreover, the thermal properties of the copolymer were evaluated by thermogravimetric analysis (TGA). The electrical conductivity is about 2.5 × 10?6 S cm?1 at room temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 477–482, 2006  相似文献   

15.
Abstract

The electrical conductivity behavior of polyaniline–poly(ethylene‐co‐vinyl acetate) (PANI–EVA) blends was variable and dynamic during their storage. It was shown that the apparent concentration of the intrinsically conductive polymer at which a conductivity jump of the blends occurs (Φ c ) is not a constant value over time. The electrical conductivity of the films of low PANI content (below 2.5 wt.%) increased by several (ca. 5) orders of magnitude. It was found that the PANI phase undergoes a flocculation process subsequently resulting in the formation of conductive pathways and a continuous network. Besides, the shape of percolation curves was found to change during storage of the films. Decreased conductivity deviations were registered for blends of low PANI content (<2.5 wt.%), indicating that an improvement (or decreasing number of defects) of the conductive pathways took place within the bulk of the insulating EVA matrix. These results and observed phenomena are discussed by means of the interfacial model for electrically conductive polymer blends. They supported the dispersion/flocculation phase transition within similar composite materials. The phase separation and conductivity jump are attributed to the interfacial interactions between the polymeric constituents. It was shown that the microstructure of the blends consists of highly ordered PANI paths embedded in the insulating EVA matrix. Long fibrils of PANI and interconnected fractal‐like networks were observed. It was found that the sizes of the PANI domains also varied during storage of the films. Due to the spontaneous flocculation of the primary PANI particles, conductive pathways are formed at extremely low percolation threshold (Φ c , loading level ca. 5 × 10?3 wt. fraction). Thus, an important property of the conductive constituent, namely its solid‐state rearrangement, was proved. This PANI self‐organization is also interpreted according to the interfacial model of polymer composites. On the other hand, the competition between self‐organization of the complex of PANI with dodecylbenzenesulfonic acid and crystallization of EVA matrix has resulted in structural changes and formation of continuous conductive networks within the blends, responsible for their significantly increased conductivity.  相似文献   

16.
In the present paper, polyaniline (PANI) was polymerized by ammonium persulphate using a chemically oxidative process under mild tempertures ranging from ?5–20°C. Electrical conductivity of as synthesized PANI got enhanced gradually owing to the increase in molecular weight and crystallinity with decrease in synthesis temperature. Extraction with tetrahydrofuran (THF) was employed as the purification method of emeraldine base (EB) to enhance the electrical conductivity of PANI effectively attributed to the removal of the low molecular weight fractions and defective molecular chains. Methanesulfonic acid (MSA) was used to dope EB due to its strong acidity and small molecular size, and the amount of dopant versus EB was also optimized. Using a novel “synergistic doping” process with m‐cresol, electrical conductivity of PANI is further enhanced owing to more regular molecular chains which resulted in better interchain charge carriers' conduction. The emeraldine salts obtained finally have high electrical conductivity reaching up to 32.5 S cm?1, which is much higher than that of the conventionally synthesized sample reported previously. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Summary: Volume conducting PA-12 based composites powders were chemically prepared by in situ polymerization and aniline doping at room temperature. These kinds of polyamide / PANI composites were investigated regarding their electrical properties. Their ac and dc electrical properties measured in the frequency range of 10−2–107 Hz are reported and the frequency dependence of electrical conductivity was investigated as a function of PANI concentration leading to the determination of the conductivity. The experimental conductivity was found to increase continuously with PANI content and explained by percolation theory with a relatively low percolation threshold of about 0.4 wt.%. The dielectric behavior of various PANI polymer composites has been characterized by the critical frequency ωc (denoting the crossover from the dc plateau of the conductivity to its frequency dependent ac behaviour). Modelling the conductivity behavior versus volume fraction using Slupkowski approach has revealed that the considered parameters are not sufficient to describe the electrical conductivity behavior.  相似文献   

18.
Thermal conductivity variations with temperature of solid phases for lauric acid (LA), myristic acid (MA), pivalic acid (PA), and stearic acid (SA) have been measured with radial heat-flow method. Temperature dependencies of the thermal conductivity for same organic materials have been obtained by linear regression analysis. From graphs of thermal conductivity versus temperature, the thermal conductivity of solid phase at their melting temperature and temperature coefficients of thermal conductivity for LA, MA, PA, and SA have been found to be 0.37, 0.39, 0.23, and 0.35 W K?1 m?1 and 0.00935, 0.00446, 0.01095, and 0.00295 K?1, respectively. The ratios of thermal conductivity of liquid phase to thermal conductivity of solid phase for LA, MA, PA, and SA have also been measured to be 0.52, 0.48, 0.25, and 0.59, respectively, with a Bridgman-type directional solidification apparatus.  相似文献   

19.
Polyaniline (PANI)/Au composite nanotubes were synthesized and developed as an electrode material for a nicotinamide adenine dinucleotide (NADH) sensor. A MnO2 self-degradable template method was used to prepare the tube-like PANI nanomaterial. By introducing PANI nanotubes into Au colloid, Au nanoparticles (NPs) were successfully decorated onto the surface of PANI nanotubes through electrostatic effects. The morphology, composition, and optical properties of the resulting products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption spectra, and thermogravimetric analysis (TGA). In addition, the obtained PANI/Au composites were used as catalysts for the electrochemical oxidation of NADH. Cyclic voltammogram (CV) experiments indicated that PANI/Au-modified glassy carbon electrode showed a higher electrocatalytic activity towards the oxidation of NADH in a neutral environment. Differential pulse voltammogram (DPV) results illustrated that the fabricated NADH sensor had excellent anti-interference ability and displayed a wide linear range from 4?×?10?4 to 8?×?10?3 M with a detection limit of 0.5?×?10?7 M.  相似文献   

20.
Well-dispersed resorcinol-formaldehyde-based carbon spheres (RFCs) have been prepared by the polycondensation of resorcinol and formaldehyde with ammonia as catalyst and subsequent carbonization of the obtained polymer. In situ polymerization of the aniline occurred in the suspension of the RFC, and RFC was surrounded by the polyaniline (PANI) wires. The PANI and RFC hybrid network (PRFC) formed gradually. In a three-electrode mode, the specific capacitance (C sp) of PRFC reaches 315 F g?1 at a current density of 1 A g?1 in 2 M H2SO4, much higher than that of pure PANI (225 F g?1) and RFC (121.7 F g?1). Furthermore, the C sp of PRFC retains 80.0 % after 1000 charge-discharge processes at a current density of 5 Ag?1. The enhanced electrochemical performance of the PRFC came from its homogeneous three-dimensional hierarchical network structure, good electric conductivity of the PANI around the RFC, and the synergistic effect between the RFC and PANI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号