首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Among various immobilizing materials, conductive polymer‐based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer‐based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer‐based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8‐year period beginning in 2010.  相似文献   

2.
Our recent progress in porous materials based on organic–inorganic hybrids, organic crosslinked polymers, and carbons is summarized. Flexible aerogels and aerogel-like xerogels with the polymethylsilsesquioxane (PMSQ) composition are obtained using methyltrimethoxysilane (MTMS) as the sole precursor. Preparation process and the flexible mechanical properties of these aerogels/xerogels are overviewed. As the derivative materials, hierarchically macro- and mesoporous PMSQ monoliths and marshmallow-like soft and bendable porous monoliths prepared from dimethyldimethoxysilane /MTMS co-precursors have been obtained. Organic crosslinked polymer monoliths with well-defined macropores are also tailored using gelling systems of vinyl monomers under controlled/living radical polymerization. The obtained polymer monoliths are carbonized and activated into activated carbon monoliths with well-defined pore properties. The activated carbon monoliths exhibit good electrochemical properties as the monolithic electrode. Some possibilities of applications for these porous materials are also discussed.  相似文献   

3.
Prospects of conducting polymers in biosensors   总被引:1,自引:0,他引:1  
Applications of conducting polymers to biosensors have recently aroused much interest. This is because these molecular electronic materials offer control of different parameters such as polymer layer thickness, electrical properties and bio-reagent loading, etc. Moreover, conducting polymer based biosensors are likely to cater to the pressing requirements such as biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs or metabolites, multi-parametric assays, miniaturization and high information density. This paper deals with the emerging trends in conducting polymer based biosensors during the last about 5 years.  相似文献   

4.
Hydrogels derived from both natural and synthetic polymers have gained significant scientific attention in recent years for their potential use as biomedical materials to treat human diseases. While a great deal of research efforts have been directed towards investigating polymeric hydrogels as matrices for drug delivery systems, examples of such hydrogels exhibiting intrinsic therapeutic properties are relatively less common. Characteristics of synthetic and natural polymers such as high molecular weight, diverse molecular architecture, chemical compositions, and modulated molecular weight distribution are unique to polymers. These characteristics of polymers can be utilized to discover a new generation of drugs and medical devices. For example, polymeric hydrogels can be restricted to the gastrointestinal tract, where they can selectively recognize, bind, and remove the targeted disease-causing substances from the body without causing any systemic toxicity that are associated with traditional small molecule drugs. Similarly hydrogels can be implanted at specific locations (such as knee and abdomen) to impart localized therapeutic benefits. The present article provides an overview of certain recent developments in the design and synthesis of functional hydrogels that have led to several polymer derived drugs and biomedical devices. Some of these examples include FDA-approved marketed products.  相似文献   

5.
Since the discovery of poly(2‐hydroxyethyl methacrylate) by Wichterle and Lim in 1960, hydrogels have been of great interest to biomedical scientists. Hydrogels are three dimensional hydrophilic polymer networks capable of swelling in water or biological fluids and retaining a large amount of fluids in the swollen state. In the last decade, hydrogels containing organophosphorus moieties were synthesized and used for proton conducting membrane, drug carriers, and scaffold for tissue engineering, pharmaceutical formulation, cosmetics, and bioseparation. One of the most versatile and rapidly developing classes of biomedical polymers is a family of polymers with a nitrogen and phosphorus backbone—polyphosphazenes. The advantage of the phosphorus–nitrogen backbone is that it can be rendered hydrolytically unstable when combined with appropriate side groups. Because of the tremendous variety of substituents that can be introduced in their structure, phosphazene polymers exhibit a very broad and sophisticated spectrum of chemical and physical properties leading to almost unlimited possibilities in the preparation of biodegradable materials Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Conducting polymer hydrogels that are capable of contacting with electrolytes at the molecular level, represent an important electrode material. However, the fabrication of self-standing hydrogels merely composed of conducting polymers is still challenging owing to the absence of reliable methods. Herein, a novel and facile macromolecular interaction assisted route is reported to fabricate self-standing hydrogels consisting of polyaniline (PANi: providing high electrochemical activity) and poly(3,4-ethylenedioxythiophene) (PEDOT: enabling high electronic conductivity). Owing to the synergistic effect between them, the self-standing hydrogels possess good mechanical properties and electronic/electrochemical performances, making them an excellent potential electrode for solid-state energy storage devices. A proof-of-concept all-hydrogel-state supercapacitor is fabricated, which exhibits a high areal capacitance of 808.2 mF cm−2, and a high energy density of 0.63 mWh cm−3 at high power density of 28.42 mW cm−3, superior to many recently reported conducting polymer hydrogels based supercapacitors. This study demonstrates a novel promising strategy to fabricate self-standing conducting polymer hydrogels.  相似文献   

7.
杨宁文  何星  唐寅 《化学通报》2023,86(10):1226-1233
水凝胶是最常用的生物材料之一。它们在化学和结构上的多样性使其能够在广泛的场景中使用,目前 水凝胶材料在生物医药领域主要用于药物输送、癌症治疗和伤口愈合等。聚合物网络是水凝胶的核心组成部分,赋予水凝胶最独特的功能和性质。在分子层面上可以控制水凝胶的连接方式和聚合物的网络结构。因此,在材料研发的初期,了解聚合物网络的连接方式、结构、功能和特性,选择合适的聚合物对于制备特定功能的水凝胶至关重要。本文首先概述了水凝胶的凝胶机理和影响凝胶的因素,在分子层面上可以控制聚合物网络的形成,从而制备临床上需要的水凝胶。最后介绍了水凝胶在临床医学上的应用,展望了水凝胶材料的未来发展趋势。  相似文献   

8.
氧化石墨烯是一种具有单原子厚度的二维材料, 具有优异的力学性能和良好的水分散性, 其表面有大量的含氧官能团. 将氧化石墨烯引入水凝胶体系中可以提高水凝胶的机械性能, 丰富其刺激响应的类型. 目前, 氧化石墨烯水凝胶在高强度、 吸附、 自愈合及智能材料等很多领域均有出色的表现. 氧化石墨烯水凝胶的研究已有10年的历史. 本文总结了氧化石墨烯水凝胶的制备方法, 归纳了智能氧化石墨烯水凝胶在光热响应、 pH响应和自愈合3个方面的响应机理和研究进展, 并综合评述了其在高强度水凝胶、 生物医学、 智能材料和污水处理等方面的应用前景.  相似文献   

9.
In this review, we briefly summarized the remarkable progress of photo-responsive polymer materials from zero-dimensional micelles, twodimensional surfaces to three-dimensional hydrogels with irreversible or reversible moieties. Based on the photo-responsiveness, polymer have been designed, synthesized and applied for various biological fields including drug delivery and cell manipulation.  相似文献   

10.
余明清  廖耀祖  朱美芳 《高分子学报》2021,(2):113-123,I0001
共轭聚合物水凝胶是利用共轭聚合物制备的水凝胶材料,兼备水凝胶的力学性质、溶胀性质和共轭聚合物优异的电化学特性.共轭聚合物水凝胶的制备方法多样,主要有原位聚合、直接填充、物理交联和化学交联等.同时,在面对环境和能源领域的应用挑战时,共轭聚合物水凝胶具备良好的发展潜能,可广泛应用于药物释放、能量转换、能量储存、传感器、组织损伤修复和污水处理等诸多领域.本文系统归纳了共轭聚合物水凝胶的制备方法和应用,对其研究目前存在的主要问题以及未来发展方向进行了分析.  相似文献   

11.
基于国内外最新研究文献 ,系统论述了近年来液晶金属配位聚合物的合成方法、液晶行为及应用前景。指出液晶金属配位聚合物的合成方法可归纳为直接配位法、单体配位法、交联配位法和聚合物反应法四种。液晶金属配位聚合物一般呈现热致液晶行为 ,显示稳定的向列液晶相或近晶液晶相。有些金属配位聚合物还呈现互变性近晶态或单变液晶性。液晶金属配位聚合物具有金属的特殊性质 ,是一种新型高性能磁导、电导和光导材料 ,可望应用于液晶显示材料、磁性信息储存薄膜材料、润滑剂和各向异性催化剂等。  相似文献   

12.
近几十年,二次锂电池作为重要的储能装置得到迅猛发展,而开发高性能的锂电池电极材料一直是电化学能源领域的研究热点之一。与传统无机正极材料相比,聚合物正极材料具有比容量高、柔软性好、廉价易得、环境友好、加工方便、可设计性强等诸多优点。本文综述了导电聚合物、共轭羰基聚合物以及含硫聚合物正极材料的结构特点、电极反应机理、电化学性能和近五年来的重大研究进展,总结了这三类聚合物电极材料的优缺点,并重点介绍了含硫聚合物电极材料中存在的问题及改进手段,最后提出了综合这三类聚合物优点的含硫共轭导电聚合物将会是该领域的研究方向。  相似文献   

13.
Polymer hydrogels have attracted much interest in recent years based on numerous applications mainly in biotechnology and medicine. For the knowledge‐based design and development of new materials for these and similar applications, it is essential to understand better the hydration properties of hydrogels and of polymers in general. With this term, we mean the particular organization of water in the hydrogel, which determines the properties of the water component, typically different than those of bulk water, and the impact of water on the properties of the polymer matrix itself. In this review, we focus on recent work with hydrogels based on poly(hydroxyethyl acrylate), mostly copolymers with a second hydrophobic polymer and silica nanocomposites. The combination of water sorption/diffusion, thermal and dielectric studies, by fully exploiting the capabilities of each individual technique, proves essential in providing significant information on particular aspects of hydration, such as water uptake, water organization, and diffusion coefficients; glass transition and plasticization; water and polymer dynamics; protonic conductivity, and in revealing interesting correlations between these particular aspects. In the outlook similarities and differences to other related systems, such as protein‐water and polymer solutions in non‐polar solvents, are stressed in the perspective of a broader study. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
Nanocellulose is an interesting building block for functional materials and has gained considerable interest due to its mechanical robustness, large surface area and biodegradability. It can be formed into various structures such as solids, films and gels such as hydrogels and aerogels and combined with polymers or other materials to form composites. Mechanical, optical and barrier properties of nanofibrillated cellulose (NFC) and microfibrillated cellulose (MFC) films were studied in order to understand their potential for packaging and functional printing applications. Impact of raw material choice and nanocellulose production process on these properties was evaluated. MFC and NFC were produced following two different routes. NFC was produced using a chemical pretreatment followed by a high pressure homogenization, whereas MFC was produced using a mechanical treatment only. TEMPO-mediated oxidation followed by one step of high pressure (2,000 bar) homogenization seems to produce a similar type of NFC from both hardwood and softwood. NFC films showed superior mechanical and optical properties compared with MFC films; however, MFC films demonstrated better barrier properties against oxygen and water vapor. Both the MFC and NFC films were excellent barriers against mineral oil used in ordinary printing inks and dichlorobenzene, a common solvent used in functional printing inks. Barrier properties against vegetable oil were also found to be exceptionally good for both the NFC and MFC films.  相似文献   

15.
We describe a simple and versatile method to fabricate conducting polymer hydrogels via supramolecular self-assembly between polymers and multivalent cations; the as-prepared hydrogels are potentially applicable in the fields of electrosensors, chemical release and artificial muscles.  相似文献   

16.
由于表面效应、小尺寸效应和量子效应,使纳米结构的导电聚合物材料与传统聚合物材料相比,显示出更优越的性能。基于神经组织对电场和电刺激敏感性,使得导电聚合物纳米材料在生物医学应用方面很有前景。本文综述了纳米结构的导电聚合物的合成方法,及其在生物医学领域的应用。合成方法主要关注于硬模板法、软模板法和无模板自组装法,以及这些方法中导电聚合物纳米结构的形成机理。总结了具有纳米结构的导电聚合物,如纳米颗粒、纳米纤维和纳米管等作为神经电极涂层材料和生物传感器等方面的应用。  相似文献   

17.
Thermosensitive hydrogels are made by radical homopolymerization of N-isopropylacrylamide (NIPAAM) or copolymerization of NIPAAM with 2-acrylamido-2-methyl-propane sulfonic acid (AMPS). The networks are semi-interpenetrated (s-IPN) with linear conducting polymers: polyaniline (PANI) or poly(N-methylaniline) (PNMANI). The semi-interpenetration affect slightly the phase transition temperature (measured by DSC) of the hydrogels, while water uptake capacity is strongly affected and depends on the relative hydrophobicity of the conducting polymer. Since polyanilines can be protonated in aqueous media, the swelling capacity of the s-IPN hydrogel depends strongly on pH unlike the unmodified hydrogel. The release of a model compound (tris(2,2′-bipyridine)ruthenium (II), ), driven by swelling or temperature, is also strongly affected both by the introduction of sulfonic groups, by copolymerization of NIPAAM with AMPS, semi-interpenetration and on the hydrophobicity of the conducting polymer. In that way, composite materials with quite different ion exchange behavior can be made by copolymerization and conducting polymer interpenetration.  相似文献   

18.
This review of the current status of conducting polymers will focus on recent progress which demonstrates that the initial promise of the late 1970's has become reality. Conducting polymers are now available as materials with truly unique properties: They combine the important electronic and optical properties of semiconductors and metals with the attractive mechanical properties and processing advantages of polymers. Conducting polymer blends based upon polyaniline (PANI) are a new class of materials in which the threshold for the onset of electrical conductivity (σ) can be reduced to volume fractions below 1%, well below that required for classical percolation (16% by volume for globular conducting objects dispersed in an insulating matrix in three dimensions). The origin of this remarkably low threshold for the onset of electrical conductivity is the self-assembled network morphology of the PANI polyblends which forms during the course of liquid-liquid separation. Since the average density of the conducting network near threshold is small, the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer increases above threshold. The low percolation threshold and the continuous increase of σ(f) above threshold are particularly important; as a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer.1-3)  相似文献   

19.
Polypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.  相似文献   

20.
Polymers such as polyacetylene, which have an extended π-electron system in their backbone, or like poly(p-phenylene) consist of a sequence of aromatic rings are excellent insulators in their native state and can be transformed by oxidation or reduction in the solid state into conductive CT-complexes which exhibit metal-like conduction characteristics. The chemical and physical processes involved and the reasons for the observed quasimetallic conductivity are not yet fully understood. The real structure of these materials in chemical and physical terms, i. e. their complicated morphology and texture, as well as the results available on the structure-property relationships of the “organic metals” must be considered when discussing their properties. In other words, a discussion of conductive polymers should be based on what is known of the highly conducting CT-complexes of low-molecular weight compounds. The discovery of the highly conducting polymer complexes has opened up a new interdisciplinary field of research which borders on polymer science, solid-state and semiconductor physics and on organic solid-state chemistry. It is hoped that this area will lead to numerous novel materials and technical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号