共查询到20条相似文献,搜索用时 15 毫秒
1.
Bose-Einstein condensates which are dominated by magnetic dipole-dipole interaction are discussed under spinful situations. We treat the spin degrees of freedom as a classical spin vector, approaching from the large spin limit to obtain an effective minimal Hamiltonian. This is a version extended from a nonlinear sigma model. By solving the Gross-Pitaevskii equation, we find several novel spin textures where the mass density and spin density are strongly coupled, depending upon trap geometries due to the long-range and anisotropic natures of the dipole-dipole interaction. 相似文献
2.
在玻色-爱因斯坦凝聚(BEC)的超流现象的研究中,人们通常采用平均场近似下求解Gross-Pitaevskii方程的方法,我们采用更严格的准确对角化的方法对弱排斥相互作用下两维旋转N-Boson体系的凝聚状态进行了研究.研究表明,弱相互作用下的基态并不是人们通常认为的单一凝聚态,而是一个碎裂凝聚态.通过碎裂态能谱与平均场方法给出的能谱之间的比较以及条件几率分布函数的计算,我们指出这种碎裂凝聚态有着内在的不稳定性,很容易破缺到一个单一凝聚状态;计算给出的条件几率分布可以用来揭示破缺后的状态,其分布图案与平均场近似下所得到的涡旋图形相类似.我们进一步注意到过去研究工作主要集中在弱相互作用极限下和强相互作用Thomas-Fermi近似极限下这两种极端情况.为考察两种极限间的中间过渡区域,我们研究了中等相互作用强度下体系的基态性质. 相似文献
3.
We show that, within mean-field theory, the density profile of a rapidly rotating harmonically trapped Bose-Einstein condensate is of the Thomas-Fermi form as long as the number of vortices is much larger than unity. Two forms of the condensate wave function are explored: (i) the lowest Landau level (LLL) wave function with a regular lattice of vortices multiplied by a slowly varying envelope function, which gives rise to components in higher Landau levels; (ii) the LLL wave function with a nonuniform vortex lattice. From variational calculations, we find it most favorable energetically to retain the LLL form of the wave function but to allow the vortices to deviate slightly from a regular lattice. The predicted distortions of the lattice are small, but in accord with recent measurements at lower rates of rotation. 相似文献
4.
We propose an experiment that would demonstrate the dc and ac Josephson effects in two weakly linked Bose-Einstein condensates. We consider a time-dependent barrier, moving adiabatically across the trapping potential. The phase dynamics are governed by a "driven-pendulum" equation, as in current-driven superconducting Josephson junctions. At a critical velocity of the barrier (proportional to the critical tunneling current), there is a sharp transition between the dc and ac regimes. The signature is a sudden jump of a large fraction of the relative condensate population. Analytical results are compared with a numerical integration of the Gross-Pitaevskii equation, in an experimentally realistic situation. 相似文献
5.
Starting with a Gaussian variational ansatz, we predict anisotropic bright solitons in quasi-2D Bose-Einstein condensates consisting of atoms with dipole moments polarized perpendicular to the confinement direction. Unlike isotropic solitons predicted for the moments aligned with the confinement axis [Phys. Rev. Lett. 95, 200404 (2005)10.1103/PhysRevLett.95.200404], no sign reversal of the dipole-dipole interaction is necessary to support the solitons. Direct 3D simulations confirm their stability. 相似文献
6.
The formation of vortices by topological phase engineering has been realized experimentally to create the first two- and four-quantum vortices in dilute atomic Bose-Einstein condensates. We consider a similar system, but in addition to the Ioffe-Pritchard magnetic trap we employ an additional hexapole field. By controlling cyclically the strengths of these magnetic fields, we show that a fixed amount of vorticity can be added to the condensate in each cycle. In an adiabatic operation of this vortex pump, the appearance of vortices into the condensate is interpreted as the accumulation of a local Berry phase. Our design can be used as an experimentally realizable vortex source for possible vortex-based applications of dilute Bose-Einstein condensates. 相似文献
7.
Two 87Rb condensates ( F = 2, m(f) = 2, and m(f) = 1) are produced in highly displaced harmonic traps and the collective dynamical behavior is investigated. The mutual interaction between the two condensates is evidenced in the center-of-mass oscillations as a frequency shift of 6.4(3)%. Calculations based on a mean-field theory well describe the observed effects of periodical collisions both on the center-of-mass motion and on the shape oscillations. 相似文献
8.
The quantum coherence of a Bose-Einstein condensate is studied using the concept of quantum fidelity (Loschmidt echo). The condensate is confined in an elongated anharmonic trap and subjected to a small random potential such as that created by a laser speckle. Numerical experiments show that the quantum fidelity stays constant until a critical time, after which it drops abruptly over a single trap oscillation period. The critical time depends logarithmically on the number of condensed atoms and on the perturbation amplitude. This behavior may be observable by measuring the interference fringes of two condensates evolving in slightly different potentials. 相似文献
9.
Nonlinear effects in interference of bose-einstein condensates 总被引:1,自引:0,他引:1
Nonlinear effects in the interference of Bose-Einstein condensates are studied using exact solutions of the one-dimensional nonlinear Schrodinger equation, which is applicable when the lateral motion is confined or negligible. With the inverse scattering method, the interference pattern is studied as a scattering problem with the linear Schrodinger equation, whose potential is profiled by the initial density distribution of the condensates. Our theory not only provides an analytical framework for quantitative predictions for the one-dimensional case, it also gives an intuitive understanding of some mysterious features of the interference patterns observed in experiments and numerical simulations. 相似文献
10.
Cornish SL Claussen NR Roberts JL Cornell EA Wieman CE 《Physical review letters》2000,85(9):1795-1798
Bose-Einstein condensation has been achieved in a magnetically trapped sample of 85Rb atoms. Long-lived condensates of up to 10(4) atoms have been produced by using a magnetic-field-induced Feshbach resonance to reverse the sign of the scattering length. This system provides new opportunities for the study of condensate physics. The variation of the scattering length near the resonance has been used to magnetically tune the condensate self-interaction energy over a wide range, extending from strong repulsive to large attractive interactions. When the interactions were switched from repulsive to attractive, the condensate shrank to below our resolution limit, and after approximately 5 ms emitted a burst of high-energy atoms. 相似文献
11.
We propose using spontaneous Raman scattering from an optically driven Bose-Einstein condensate as a source of atom-photon pairs whose internal states are maximally entangled. Generating entanglement between a particle which is easily transmitted (the photon) and one which is easily trapped and coherently manipulated (an ultracold atom) will prove useful for a variety of quantum-information related applications. We analyze the type of entangled states generated by spontaneous Raman scattering and construct a geometry which results in maximum entanglement. 相似文献
12.
We discuss the dynamics of an atomic Bose-Einstein condensate when pairs of atoms are converted into molecules by single-color photoassociation. Three main regimes are found, and it is shown that they can be understood on the basis of time-dependent two-body theory. In particular, the so-called rogue dissociation regime [Phys. Rev. Lett. 88, 090403 (2002)10.1103/PhysRevLett.88.090403], which has a density-dependent limit on the photoassociation rate, is identified with a transient regime of the two-atom dynamics exhibiting universal properties. Finally, we illustrate how these regimes could be explored by photoassociating condensates of alkaline-earth atoms. 相似文献
13.
We discuss the long-range nature of the molecules produced in recent experiments on molecular Bose-Einstein condensation. The properties of these molecules depend on the full two-body Hamiltonian and not just on the states of the system in the absence of interchannel couplings. The very long-range nature of the state is crucial to the efficiency of production in the experiments. Our many-body treatment of the gas accounts for the full binary physics and describes properly how these molecular condensates can be directly probed. 相似文献
14.
A new mechanism of thermalization involving a direct energy cascade is obtained in the truncated Gross-Pitaevskii dynamics. A long transient with partial thermalization at small scales is observed before the system reaches equilibrium. Vortices are found to disappear as a prelude to final thermalization. A bottleneck that produces spontaneous effective self-truncation and delays thermalization is characterized when large dispersive effects are present at the truncation wave number. Order of magnitude estimates indicate that self-truncation takes place in turbulent Bose-Einstein condensates. This effect should also be present in classical hydrodynamics and models of turbulence. 相似文献
15.
We use a multiple time scale boundary layer theory to derive the equation of motion for a dark (or grey) soliton propagating through an effectively one-dimensional cloud of Bose-Einstein condensate, assuming only that the background density and velocity vary slowly on the soliton scale. We show that solitons can exhibit viscous or radiative acceleration (antidamping), which we estimate as slow but observable on experimental time scales. 相似文献
16.
Shin Y Saba M Schirotzek A Pasquini TA Leanhardt AE Pritchard DE Ketterle W 《Physical review letters》2004,92(15):150401
Bose-Einstein condensates of sodium atoms, prepared in an optical dipole trap, were distilled into a second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling over the potential barrier separating the two wells and then forming a new condensate. This process serves as a model system for metastability in condensates, provides a test for quantum kinetic theories of condensate formation, and also represents a novel technique for creating or replenishing condensates in new locations. 相似文献
17.
We investigate theoretically the four-wave mixing of optical and matter waves resulting from the scattering of a short light pulse off an atomic Bose-Einstein condensate, as recently demonstrated by D. Schneble et al. [Science 300, 475 (2003)]]. We show that atomic "pair production" from the condensate results in the generation of both forward- and backward-propagating matter waves. These waves are characterized by different phase-matching conditions, resulting in different angular distributions and temporal evolutions. 相似文献
18.
We study the stability and dynamics of vortices in two-species condensates as prepared in the recent JILA experiment [Matthews et al., Phys. Rev. Lett. 83, 2498 (1999)]. We find that of the two possible configurations, in which one species has vorticity m = 1 and the other one has m = 0, only one is linearly stable, which agrees with the experimental results. However, it is found that in the unstable case the vortex is not destroyed by the instability, but may be transferred from one species to the other or display complex spatiotemporal dynamics. 相似文献
19.
We propose a method for simulating a single realization of a collision of two Bose-Einstein condensates. Recently [Phys. Rev. Lett. 94, 200401 (2005)], we introduced a quantum model of incoherent elastic scattering in a collision of two counterpropagating atomic Gaussian wave packets. Here we show that this model is capable of generating data that can be interpreted as results of a single collisional event. We find a range of parameters, including relative velocity, population, and the size of colliding condensates, where the structure of the halo of scattered atoms in a single realization strongly differs from that averaged over many realizations. 相似文献
20.
We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m(F)>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870 G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters. 相似文献