首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
This paper reports a method to generate tunable bottle beams using an ultrasonic lens, by which the bottle position can be precisely adjusted with the change of the acoustic frequency. Therefore, the position of a single particle or bubble in liquid can be manipulated without using phased array which is costly and huge with complex circuits. Furthermore, we introduced this method to multiple bubble manipulation using acoustic holography. The bottle properties against frequency are theoretically and experimentally analyzed. It is shown that the bottle position depends almost linearly on the operating frequency, which provides a basis for the precise manipulation of bubbles and particles. In addition, the relationship between the acoustic radiation force and the drag force under different incident acoustic pressures is considered, establishing a limit on the moving velocity of the trapped particles. The ultrasonic field observation is further demonstrated by Schlieren imaging system. The proposed method has potential biomedical applications, such as more flexible cell manipulation and targeted drug delivery in vivo, as well as potential applications in the study of chemical reactions between micro objects.  相似文献   

2.
沈壮志  吴胜举 《物理学报》2012,61(12):124301-124301
以液体为工作介质, 利用空化泡的RP控制方程, 模拟分析了无量纲化的电场频率、场强的幅值以及无量纲化的声波频率、 声压幅值的变化对空化泡运动特性的影响. 结果表明: 声场和电场联合作用时, 空化泡运动处于混沌区域范围远高于两者单独作用下空化泡的混沌区域范围. 这不仅对声空化的进一步研究具有重要的理论意义, 而且对于提高和改进空化降解有机污染物的技术也具有指导意义.  相似文献   

3.
沈壮志 《物理学报》2015,64(12):124702-124702
以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.  相似文献   

4.
沈壮志  林书玉 《物理学报》2011,60(10):104302-104302
以水为工作介质,考虑了液体的可压缩性,研究了声场中气泡的运动特性,模拟了声波频率、声压幅值、气泡初始半径以及液体的表面张力和黏滞系数的变化对气泡运动状态的影响. 分析了空化处理效果与气泡运动状态之间关系. 结果表明:气泡运动处于混沌状态,是提高声空化降解有机污染物能力的最重要因素. 关键词: 声空化 混沌 相图 功率谱图  相似文献   

5.
声波在含气泡液体中的线性传播   总被引:1,自引:0,他引:1       下载免费PDF全文
王勇  林书玉  张小丽 《物理学报》2013,62(6):64304-064304
为了探讨含气泡液体对声波传播的影响, 研究了声波在含气泡液体中的线性传播. 在建立含气泡液体的声学模型时引入气泡含量的影响,建立气泡模型时引用 Keller的气泡振动模型并同时考虑气泡间的声相互作用,得到了经过修正的气泡振动方程. 通过对含气泡液体的声传播方程和气泡振动方程联立并线性化求解,在满足 (ω R0)/c << 1 的前提下,得到了描述含气泡液体对声波传播的衰减系数和传播速度. 通过数值分析发现,在驱动声场频率一定的情况下,气泡含量的增加及气泡的变小均会导致衰减系数增加和声速减小;气泡的体积分数和大小一定时, 驱动声场频率在远小于气泡谐振频率的情况下,声速会随驱动频率的增加而减小; 气泡间的声相互作用对声波传播速度及含气泡液体衰减系数的影响不明显.最终认为气泡的大小、 数量和驱动声场频率是影响声波在含气泡液体中线性传播的主要因素. 关键词: 含气泡液体 线性声波 声衰减系数 声速  相似文献   

6.
刘晓波  张建润  李普 《中国物理 B》2012,21(5):54301-054301
An acoustic pressure model of bubble bursting is proposed.An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported.It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first,then it transforms into a jet wave.The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases.The results of the investigation can be used to understand the acoustic characteristics of bubble bursting.  相似文献   

7.
A theoretical model for the prediction of ambient noise level due to collective oscillations of air bubbles under breaking wind waves is presented. The model uses a budget of the energy flux from the breaking waves to quantify acoustic power radiation by a bubble cloud. A shift of the noise spectra to lower frequency due to collective bubble oscillation is assumed. The model derives good estimates of the magnitude, slope, and frequency range of the noise spectra using the wind speed or height of breaking waves.  相似文献   

8.
This paper reports on theoretical research into the dynamics, acoustic noise and noise spectrum of a single cavitation bubble affected by non-gradiental acoustic fields. It is shown that all the characteristic features of experimental acoustic cavitation spectra occur in the spectrum of a single bubble.  相似文献   

9.
In acoustic droplet vaporization (ADV), a cavitated bubble grows and collapses depending on the pressure amplitude of the acoustic pulse. During the bubble collapse, the surrounding liquid is compressed to high pressure, and liquid compressibility can have a significant impact on bubble behavior and ADV threshold. In this work, a one-dimensional numerical model considering liquid compressibility is presented for ADV of a volatile microdroplet, extending our previous Rayleigh-Plesset based model [Ultrason. Chem. 71 (2021) 105361]. The numerical results for bubble motion and liquid energy change in ADV show that the liquid compressibility highly inhibits bubble growth during bubble collapse and rebound, especially under high acoustic frequency conditions. The liquid compressibility effect on the ADV threshold is quantified with varying acoustic frequencies and amplitudes.  相似文献   

10.
两种气泡混合的声空化   总被引:1,自引:0,他引:1       下载免费PDF全文
苗博雅  安宇 《物理学报》2015,64(20):204301-204301
将非线性声波方程和改进的Rayleigh-Plesset方程联立可以描述空化环境中的声场及相应的气泡动力学特征. 用时域有限差分方法模拟了圆柱形容器内两种气泡相互混合时的空化情况. 在烧杯内的稳态背景声场形成过程中, 瓶壁耗散吸收扮演了重要的角色. 在稳态背景声场的基础上, 分析了混合气泡与声场的相互作用、气泡之间的相互作用、混合情况下的频谱特性. 结果表明: 两种气泡平衡半径都不太大时, 气泡与声场的相互作用不强, 声场及气泡的行为也比较规律; 相反, 当其中一种气泡平衡半径相对比较大时, 声场与气泡具有较强的非线性相互作用, 声场及气泡的行为表现出复杂的特性.  相似文献   

11.
Considering liquid viscosity, surface tension, and liquid compressibility, the effects of dynamical behaviors of cavitation bubbles on temperature and the amount of oxides inside the bubble are numerically investigated by acoustic field,regarding water as a work medium. The effects of acoustic frequency, acoustic pressure amplitude, and driving waveforms on bubble temperature and the number of oxides inside the bubbles by rapid collapse of cavitation bubbles are analysed.The results show that the changes of acoustic frequency, acoustic pressure amplitude, and driving waveforms not only have an effect on temperature and the number of oxides inside the bubble, but also influence the degradation species of pollution,which provides guidance for improving the degradation of water pollution.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(4):1496-1503
Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.  相似文献   

13.
In the present paper, resonance characteristics of the vapor bubble oscillating in an acoustic field are investigated analytically. The analytical solution of the non-dimensional perturbation of the instantaneous bubble radius during the transient process in the initial oscillation stage is explicitly obtained and physically analyzed at the resonance situation based on the Laplace transform method. And the typical oscillation behaviors obtained from the analytical solution are thoroughly exhibited and analyzed in the time and frequency domains. In addition, the corresponding oscillation behaviors at the non-resonance situation are also investigated for the purpose of comparisons. Through our investigation, several essential conclusions can be drawn as follows: (1) The analytical solution of the non-dimensional perturbation of the instantaneous bubble radius can be divided into four terms according to the physical meaning. Among them, it is the term related to the acoustic field that causes the progressively violent bubble oscillation. (2) The vapor bubble with a smaller equilibrium radius could respond faster and more significantly to the acoustic field during the oscillation. (3) The bubble oscillation characteristics always exhibit significant differences at the resonance and non-resonance situations in both the time and frequency domains, even if the difference between the natural frequency of the oscillating vapor bubble and the angular frequency of the acoustic field is greatly small.  相似文献   

14.
The broad-band noise has been experimentally used to monitor the cavitation activity in a sonochemical reactor, an ultrasonic cleaning bath, a biological tissue, etc. However, the origin of the broad-band noise is still under debate. In the present review, two models for the mechanism of the broad-band noise are discussed. One is acoustic emissions from chaotically (non-periodically) pulsating bubbles. The other is acoustic emissions from bubbles with temporal fluctuation in the number of bubbles. It is suggested that the latter mechanism is sometimes dominant. Further studies are required on the role for bubble cluster dynamics as well as the bubble–bubble interaction in the broad-band noise especially at relatively low ultrasonic frequencies.  相似文献   

15.
Frequency dependent measurements of attenuation and/or sound speed through clouds of gas bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas. The inversions are often done using an effective medium theory as a forward model under the assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under circumstances in which single scattering does not adequately describe the pressure field, the assumption of independence in position can yield large errors when clustering is present, leading to errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment. A method is described here in which the existence of bubble clustering can be identified by examining the consistency between the first two statistical moments of multiple frequency acoustic measurements.  相似文献   

16.
The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.  相似文献   

17.
微泡对高强度聚焦超声声压场影响的仿真研究*   总被引:2,自引:1,他引:1  
微泡对高强度聚焦超声(HIFU)治疗焦域具有增效作用,而HIFU治疗中不同声学条件下微泡对HIFU形成声压场的影响尚不清楚。本文基于气液混合声波传播方程、Keller气泡运动方程、时域有限差分(FDTD)法和龙格-库塔(RK)法数值仿真研究输入声压、激励频率、气泡初始空隙率和气泡初始半径对HIFU形成声压场的影响。研究结果表明,随着输入声压的增大,焦点处声压升高但焦点处最大声压与输入声压的比值减小,焦点位置几乎不变;随着激励频率和气泡初始半径的增大,焦点处声压升高且焦点位置向远离换能器方向移动;随着气泡初始空隙率的增大,焦点处声压降低且焦点位置向换能器方向移动。  相似文献   

18.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

19.
The evolution of acoustic Lichtenberg figure (ALF) in ultrasound fields is studied using high-speed photography. It is observed that bubbles travel along the branch to the aggregation region of an ALF, promoting the possibility of large bubble or small cluster formation. Large bubbles move away from the aggregation region while surrounding bubbles are attracted into this structure, and a bubble transportation cycle arises in the cavitation field. A simplified model consisting of a spherical cluster and a chain of bubbles is developed to explain this phenomenon. The interaction of the two units is analyzed using a modified expression for the secondary Bjerknes force in this system. The model reveals that clusters can attract bubbles on the chain within a distance of 2 mm, leading to a bubble transportation process from the chain to the bubble cluster. Many factors can affect this process, including the acoustic pressure, frequency, bubble density, and separation distance. The larger the bubble in the cluster, the broader the attraction region. Therefore, the presence of large bubbles might enhance the process in this system. Local disturbances in bubble density could destroy the ALF structure. The predictions of the model are in good agreement with the experimental phenomena.  相似文献   

20.
The results of studying respiratory noise at the chest wall by the method of acoustic intensimetry reveal the presence of frequency components with different signs of the real and imaginary parts of the cross spectrum obtained for the responses of the receivers of vibratory displacement and dynamic force. An acoustic model is proposed to explain this difference on the basis of the hypothesis that the contributions of both air-borne and structure-borne sound are significant in the transmission of respiratory noise to the chest wall. It is shown that, when considered as an acoustic channel for the basic respiratory noise, the respiratory system of an adult subject has two resonances: in the frequency bands within 110–150 and 215–350 Hz. For adults in normal condition, the air-borne component of the basic respiratory noise predominates in the region 100–300 Hz in the lower parts of lungs. At forced respiration of healthy adults, the sounds of vesicular respiration are generated by the turbulent air flow in the 11th-through 13th-generation bronchi, and the transmission of these sounds to the chest wall in normal condition is mainly through air and is determined by the resonance of the vibratory system formed by the elasticity of air in the respiratory ducts of lungs and by the surface mass density of the chest wall. It is demonstrated that the distance from the chest wall to the sources of structure-borne additional respiratory noise, namely, wheezing with frequencies above 300 Hz, can be estimated numerically from the ratio between the real and imaginary parts of the cross spectrum on the assumption that the source is of the quadrupole type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号