首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider mesoscopic fluctuations of Coulomb drag transresistivity between two layers at a Landau level filling factor nu = 1/2 each. We find that, at low temperatures, sample to sample fluctuations exceed both the ensemble average and the corresponding fluctuations at B = 0. At the experimentally relevant temperatures, the variance of the transresistivity is proportional to T(-1/2). We find the dependence of this variance on density and magnetic field to reflect the attachment of two flux quanta to each electron.  相似文献   

2.
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmittance and the optical conductivity σ(ω) of undoped LaxCa14−xCu24O41 for x=4, 5, and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2≤J/J≤1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.  相似文献   

3.
Using a "standard" NMR spin-echo technique we determined the spin polarization P of two-dimensional electrons, confined to GaAs quantum wells, from the hyperfine shift of Ga nuclei located in the wells. Concentrating on the temperature ( 0.05 less, similarT less, similar10 K) and magnetic field ( 7 less, similarB less, similar17 T) dependencies of P at Landau level filling factor nu = 1/2, we find that the results are described well by a simple model of noninteracting composite fermions, although some inconsistencies remain when the two-dimensional electron system is tilted in the magnetic field.  相似文献   

4.
5.
Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020+/-0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3.  相似文献   

6.
We provide numerical evidence for composite fermion pairing in quantum Hall bilayer systems at filling nu=1/2+1/2 for intermediate spacing between the layers. We identify the phase as p_(x)+ip_(y) pairing, and construct high accuracy trial wave functions to describe the ground state on the sphere. For large distances between the layers, and for finite systems, a competing "Hund's rule" state, or composite fermion liquid, prevails for certain system sizes.  相似文献   

7.
NMR measurements of the electron spin polarization (P) have been performed on a 2D electron system at and around half-filled lowest Landau level. Comparing the magnetic field and the temperature dependence of P to models of free and interacting composite fermions (CF), the imbalance of spin-up and spin-down CF Fermi seas is mapped as a function of Zeeman energy. Independent measurements of the CF effective mass, g factor, and Fermi energy are obtained from the thermal activation of P in tilted fields. The filling factor dependence of the P for 2 / 5相似文献   

8.
9.
10.
We report on the dramatic evolution of the quantum Hall ferromagnet in the fractional quantum Hall regime at nu=2/5 filling. A large enhancement in the characteristic time scale gives rise to a dynamical transition into a novel quantized Hall state. The observed Hall state is determined to be a zero-temperature phase distinct from the spin-polarized and spin-unpolarized nu=2/5 fractional quantum Hall states. It is characterized by a strong temperature dependence and puzzling correlation between temperature and time.  相似文献   

11.
12.
13.
We present a phase diagram for a double quantum well bilayer electron gas in the quantum Hall regime at a total filling factor nu=1, based on exact numerical calculations of the topological Chern number matrix and the (interlayer) superfluid density. We find three phases: a quantized Hall state with pseudospin superfluidity, a quantized Hall state with pseudospin "gauge-glass" order, and a decoupled composite Fermi liquid. Comparison with experiments provides a consistent explanation of the observed quantum Hall plateau, Hall drag plateau, and vanishing Hall drag resistance, as well as the zero-bias conductance peak effect, and suggests some interesting points to pursue experimentally.  相似文献   

14.
15.
16.
The ground state of the two-dimensional electron gas near nu=1 is investigated by inelastic light scattering measurements carried down to very low temperatures. Away from nu=1, the ferromagnetic spin wave collapses and a new low-energy spin wave emerges below the Zeeman gap. The emergent spin wave shows soft behavior as its energy increases with temperature and reaches the Zeeman energy for temperatures above 2 K. The observed softening indicates an instability of the two-dimensional electron gas towards a magnetic order that breaks spin rotational symmetry. We discuss our findings in light of the possible existence of a Skyrme crystal.  相似文献   

17.
In bilayer quantum Hall systems at filling fractions near nu=1/2+1/2, as the spacing d between the layers is continuously decreased, intralayer correlations must be replaced by interlayer correlations, and the composite fermion (CF) Fermi seas at large d must eventually be replaced by a composite boson (CB) condensate or "111 state" at small d. We propose a scenario where CBs and CFs coexist in two interpenetrating fluids in the transition. Trial wave functions describing these mixed CB-CF states compare very favorably with exact diagonalization results. A Chern-Simons transport theory is constructed that is compatible with experiment.  相似文献   

18.
A procedure is presented for the calculation of the double vibrational collision-induced absorption CO(2) (nu(3) = 1) + N(2) (nu(1) = 1) <-- CO(2) (nu(3) = 0) + N(2) (nu(1) = 0) on the basis of quantum lineshapes computed using an isotropic potential and dipole-induced dipole functions. The linestrengths and energies of the vibration-rotation transitions are treated explicitly for N(2), utilizing the HITRAN database for CO(2). The theoretical absorption profile is compared to recent experimental results. By narrowing the width of the individual lines contributing to the overall absorption profile relative to their values determined for N(2)-N(2) collision-induced absorption, excellent agreement between theory and experiment is obtained. Copyright 2000 Academic Press.  相似文献   

19.
The structure and orientational ordering of N2O molecules physisorbed on graphite (0001) is investigated applying x-ray, neutron, and low-energy electron diffraction techniques. Combining the results of the three techniques, we find that N2O forms a highly ordered, hexagonal, commensurate (sqrt[21]xsqrt[21])R10.89 degrees phase. The unit cell contains seven molecules which are arranged in a seven-sublattice pinwheel structure, unexpected for linear molecules on a hexagonal lattice. Potential energy calculations corroborate these results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号