首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5 MHz, 9 cm aperture width, 8.0 cm focal length) show that the distribution of temperature can keep the same “cigar shape” in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a “cigar shape” tumor is designed and tested through numerical simulation. One single-point on the border of the “cigar shape” tumor is selected as the control target and is controlled at the temperature of 43 °C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0 kg/(m3 s) and 4.5 kg/(m3 s) to the different targets, it was found that the temperatures on the border of the “cigar shape” tumor can achieve the desired temperature of 43 °C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system.  相似文献   

2.
Uniform, adherent, single phase samarium doped ceria films have been successfully deposited by spray pyrolysis technique for their application in solid oxide fuel cell. These films have been deposited at different substrate temperatures on glass substrate and subsequently heat treated in tube furnace. Effect of substrate temperature and annealing temperature on phase formation was studied with thermo-gravimetric analysis and differential temperature analysis, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray analysis techniques. These studies showed the formation of single phase Ce0.8Sm0.2O1.9 films, at substrate temperature 400 °C and annealing temperature 550 °C. Electrical resistivity of the films, at room temperature was of the order of 107 Ω cm while at 400 °C it is found to be of the order of 101 Ω cm. This reveals the use of these films for making low temperature solid oxide fuel cells.  相似文献   

3.
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 °C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 Å each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 °C in a step of 100 °C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 °C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 °C due to the formation of TiNi3 and Ti2Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes.  相似文献   

4.
Single crystals of nickel malonate dihydrate were grown by the gel technique, employing the single diffusion method. Thermal dehydration of the crystal was investigated by thermogravimetric and differential thermal analyses. The title compound exhibits a steady thermal behaviour at higher temperature range of 350-800 °C. The dielectric properties of the prepared sample were analyzed as a function of frequency in the range of 1 kHz-1 MHz and at temperatures between 40 and 140 °C.  相似文献   

5.
Thin films of SnSb2S4 have been prepared on glass substrate by using thermal evaporation techniques. The films were annealed in argon gas at low pressure in sealed glass ampoules at 85 °C, 150 °C, 275 °C and 325 °C. XRD of the films reveal that the low temperature annealed films are poly crystalline while the as deposited films and high annealed films are in amorphous states. There is no adequate variation in the photoconductivity response of the amorphous and crystalline phases. The transmittance of the films is low and having no transmittance below 740 nm. The band gap calculated by ellipsometry technique is in the range of 1.82–3.1 eV. The films have n-type conductivity but the film annealed at 325 °C show p-type conductivity.  相似文献   

6.
Perovskite phase development study of PCT 90/10 system was carried out. Modified chemical technique was used for synthesis. Single perovskite phase with a polycrystalline tetragonal structure was obtained in PCT 90/10 ceramic system at 600 °C processing temperature. Dense packing of grains with average grain size ∼1 μm was observed in PCT 90/10 ceramic samples. Curie transition temperature (Tc) of PCT 90/10 ceramic samples was found to be ∼180 °C with diffuse phase transition.  相似文献   

7.
In this work, the feasibility of texture parameters extracted from B-Mode images were explored in quantifying medium temperature variation. The goal is to understand how parameters obtained from the gray-level content can be used to improve the actual state-of-the-art methods for non-invasive temperature estimation (NITE). B-Mode images were collected from a tissue mimic phantom heated in a water bath. The phantom is a mixture of water, glycerin, agar-agar and graphite powder. This mixture aims to have similar acoustical properties to in vivo muscle. Images from the phantom were collected using an ultrasound system that has a mechanical sector transducer working at 3.5 MHz. Three temperature curves were collected, and variations between 27 and 44 °C during 60 min were allowed. Two parameters (correlation and entropy) were determined from Grey-Level Co-occurrence Matrix (GLCM) extracted from image, and then assessed for non-invasive temperature estimation. Entropy values were capable of identifying variations of 2.0 °C. Besides, it was possible to quantify variations from normal human body temperature (37 °C) to critical values, as 41 °C. In contrast, despite correlation parameter values (obtained from GLCM) presented a correlation coefficient of 0.84 with temperature variation, the high dispersion of values limited the temperature assessment.  相似文献   

8.
Thin films of CdTe have been deposited onto stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using electrodeposition technique. The different preparative parameters, such as deposition time, bath temperature and pH of the bath have been optimized by photoelectrochemical (PEC) technique to get good quality photosensitive material. The deposited films are annealed at different temperature in presence of air. Annealing temperature is also optimized by PEC technique. The film annealed at 200 °C showed maximum photosensitivity. Different techniques have been used to characterize as deposited and also as annealed (at 200 °C) CdTe thin film. The X-ray diffraction (XRD) analysis showed the polycrystalline nature, and a significant increase in the XRD peak intensities is observed for the CdTe films after annealing. Optical absorption shows the presence of direct transition with band gap energy 1.64 eV and after annealing it decreases to 1.50 eV. Energy dispersive analysis by X-ray (EDAX) study for the as-deposited and annealed films showed nearly stoichiometric compound formation. Scanning electron microscopy (SEM) reveals that spherically shaped grains are more uniformly distributed over the surface of the substrate for the CdTe film.  相似文献   

9.
Laser shock processing was performed on 00Cr12 standard tensile specimens to reveal its effect on fatigue properties. Mechanical properties of the specimens were tested at the temperatures of 25 °C, 400 °C, 500 °C and 600 °C respectively. The correlations between the fatigue times and the axial strain at different temperatures were explored. The results indicate that the anti-fatigue life of material is enhanced greatly at the room temperature after laser shock processing in which residual compressive stress is mechanically produced into the surface. The yield strength and the elasticity coefficient of 00Cr12 specimens are enhanced greatly after laser shock processing; the cycle times are obviously longer at the elevated temperature, and the laser-shocked samples exhibit lower plastic strain amplitudes compared with the non-treated ones.  相似文献   

10.
B. Fu 《Applied Surface Science》2010,257(5):1500-1505
This paper addresses the in situ growth stress evolution and post-growth stress relaxation during the phase separation of immiscible Fe0.51Cu0.49 thin films at various in situ deposition temperatures. Each film was sputter-deposited onto a 10 nm Si3N4 underlayer that was grown on top of Si [0 0 1] substrate at 25 °C, 145 °C, 205 °C, 265 °C or 325 °C. The thin film stress was measured using a wafer curvature technique. The in situ growth stress increased in compression with increasing substrate temperature. The stress relaxation of the Fe0.51Cu0.49 was found to have a linear increase with the inverse grain size for films deposited at temperatures greater than 205 °C. The stress state was correlated to the films’ phase and morphology by X-ray diffraction, (scanning) transmission electron microscopy and atomic force microscopy techniques.  相似文献   

11.
Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 °C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 °C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m−1 and giving a (BH)max of 129(±2.5) kJ m−3.  相似文献   

12.
Barium ferrite thin films have been prepared by radio frequency magnetron sputtering on a sapphire (0 0 1) substrate at substrate temperature of 500 °C and 650 °C, respectively. The films were further annealed in air at 1000 °C for 5 h. X-ray diffraction shows that the films at the lower substrate temperatures have a good epitaxial relation with respect to the substrate, while the samples under the higher substrate temperatures have (1 0 9) planes parallel to the substrate. The remanence ratio decreases from 0.82 to 0.47 when the substrate temperature is increased. We attribute the variation of the growth direction to the enhanced vertical mobility of the deposited atoms when the substrate temperature is increased.  相似文献   

13.
The present study is focused on the influence of vacuum thermal treatment on surface/interface electronic properties of Si/Ge multilayer structures (MLS) characterized using X-ray photoelectron spectroscopy (XPS) technique. Desired [Si(5 nm)/Ge(5 nm)]×10 MLS were prepared using electron beam evaporation technique under ultra high vacuum (UHV) conditions. The core-level XPS spectra of as-deposited as well as multilayer samples annealed at different temperatures such as 100 °C, 150 °C and 200 °C for 1 h show substantial reduction in Ge 2p peak integrated intensity, whereas peak intensity of Si 2p remains almost constant. The complete interdiffusion took place after annealing the sample at 200 °C for 5 h as confirmed from depth profiling of annealed MLS. The asymmetric behaviour in intensity patterns of Si and Ge with annealing was attributed to faster interdiffusion of Si into Ge layer. However, another set of experiments on these MLS annealed at 500 °C suggests that interdiffusion can also be studied by annealing the system at higher temperature for relatively shorter time duration.  相似文献   

14.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

15.
Silicon nanowires (SiNWs) were synthesized from pure silane precursor gas and Au nanoparticles catalyst at below Au-Si eutectic temperature. The SiNWs were grown onto Si (1 1 1) substrates using very high frequency plasma enhanced chemical vapor deposition via a vapor-solid-solid mechanism at temperatures ranging from 363 to 230 °C. The morphology of the synthesized SiNWs was characterized by means of field emission scanning electron microscope equipped with energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction technique and Raman spectroscope. Results demonstrated that the SiNWs can be grown at the temperature as low as 250 °C. In addition, it was revealed that the grown wires were silicon-crystallized.  相似文献   

16.
Y. Maehara 《Surface science》2006,600(18):3575-3580
Phase transitions of K on Mo(1 1 0) have been studied by RHEED technique. As Ba and Cs structures on the bcc(1 1 0) surface, surface structures of K were hexagonal from RT to 250 °C for θ > 0.9 ML. The hexagonal structure successively expanded from α to γ structure with Nishiyama-Wassermamm (N-W) orientation relationship. The nearest neighbor spacing in the α structure at RT was 4.50 Å, which is very closed to the atomic distance of K in metal, and stretched to 5.14 Å in the γ structure at T = 200 °C. At temperatures greater than T = 250 °C, the γ structure oriented in N-W and Kurdjumov-Sachs (K-S) relationships at the same time and stayed up to the temperature of 450 °C. These two orientations of γ structure also appeared in all temperature range for 0.4 < θ < 0.9 ML.  相似文献   

17.
In this letter, we propose a high resolution temperature insensitive interrogation technique for FBG sensors where one FBG acts as an edge filter to interrogate a separate FBG sensor. A high resolution of better than 5 με in strain measurement range from 0 to 1100 με and the best resolution of better than 1 με were verified by experiments. An error of only ±2.2 με is achieved over a temperature range from 15 to 50 °C, indicating that this strain interrogation technique is temperature insensitive. Using an altered system configuration, the temperature was also measured simultaneously with a resolution better than 0.2 °C.  相似文献   

18.
Tsui PH  Chien YT  Liu HL  Shu YC  Chen WS 《Ultrasonics》2012,52(7):925-935
Clinical trials have demonstrated that hyperthermia improves cancer treatments. Previous studies developed ultrasound temperature imaging methods, based on the changes in backscattered energy (CBE), to monitor temperature variations during hyperthermia. Echo shift, induced by increasing temperature, contaminates the CBE image, and its tracking and compensation should normally ensure that estimations of CBE at each pixel are correct. To obtain a simplified algorithm that would allow real-time computation of CBE images, this study evaluated the usefulness of CBE imaging without echo shift compensation in detecting distributions in temperature. Experiments on phantoms, using different scatterer concentrations, and porcine livers were conducted to acquire raw backscattered data at temperatures ranging from 37 °C to 45 °C. Tissue samples of pork tenderloin were ablated in vitro by microwave irradiation to evaluate the feasibility of using the CBE image without compensation to monitor tissue ablation. CBE image construction was based on a ratio map obtained from the envelope image divided by the reference envelope image at 37 °C. The experimental results demonstrated that the CBE image obtained without echo shift compensation has the ability to estimate temperature variations induced during uniform heating or tissue ablation. The magnitude of the CBE as a function of temperature obtained without compensation is stronger than that with compensation, implying that the CBE image without compensation has a better sensitivity to detect temperature. These findings suggest that echo shift tracking and compensation may be unnecessary in practice, thus simplifying the algorithm required to implement real-time CBE imaging.  相似文献   

19.
Thin films of lithium ferrite (with general composition Li0.5Fe2.5O4) were fabricated at low temperatures (up to 650 °C) by citrate-route using spin-deposition technique. Deposited films consisted of nanometer-sized grains as evidenced by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. XRD patterns for annealed films showed broad peaks exhibiting a spinel phase. Size of nanocrystallites is estimated to be 3-7 nm using Scherrer's equation. Average grain size ∼8.5 nm is observed from TEM images of films annealed at 650 °C. Scanning electron micrographs show the formation of spherical aggregates of around 130 nm in diameter. The AFM analysis clearly evidenced the development of nanograins even at low (∼500 °C) annealing temperatures. Significant decrease in complex dielectric permittivity (′ − j″) with frequency is observed in the low frequency (100 Hz-1 MHz) as well as in X-band microwave frequency (8-12 GHz) region. ′ is found to be in the range of 15.7-33.9 in low frequency region, whereas in X-band microwave frequency region, it is found to lie between 3.9 and 4.9. Similarly, ″ is found to be 0.16-5.9 in the low frequency region, and 0.002-0.024 in the X-band microwave frequency region. Room temperature dc resistivity of these films is estimated to lie in the range of 106-108 Ω cm. These results strongly suggest that citrate-route processed nanocrystalline lithium ferrite thin films are promising candidates for monolithic microwave integrated circuits (MMICs).  相似文献   

20.
We propose and demonstrate strain and temperature discrimination technique using a single fiber Bragg grating (FBG) written in the core of an erbium doped fiber. We observed that amplified spontaneous emission power varying linearly from the erbium doped fiber with temperature which determines temperature changes and strain is estimated by subtracting the wavelength shift due to temperature change, from the measured shift corresponding to the dip in the transmission spectrum of the FBG. A simple and compact FBG sensor is presented with improved rms errors of 21.2 μ? and 1 °C over ranges of 0–800 μ? and 40–95 °C, respectively. The sensor is shown to have strain and temperature sensitivity of 0.8 pm/μ? and 12 pm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号