共查询到20条相似文献,搜索用时 15 毫秒
1.
van Zyl WE López-de-Luzuriaga JM Mohamed AA Staples RJ Fackler JP 《Inorganic chemistry》2002,41(17):4579-4589
2,4-Diaryl- and 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimers (RP(S)S)(2) (R = Ph (1a), 4-C(6)H(4)OMe (1b), FeC(10)H(9) (Fc) (1c)) react with a variety of alcohols, silanols, and trialkylsilyl alcohols to form new dithiophosphonic acids in a facile manner. Their corresponding salts react with chlorogold(I) complexes in THF to produce dinuclear gold(I) dithiophosphonate complexes of the type [AuS(2)PR(OR')](2) in satisfactory yield. The asymmetrical nature of the ligands allows for the gold complexes to form two isomers (cis and trans) as verified by solution (1)H and (31)P[(1)H] NMR studies. The X-ray crystal structures of [AuS(2)PR(OR')](2) (R = Ph, R' = C(5)H(9) (2); R = 4-C(6)H(4)OMe, R' = (1S,5R,2S)-(-)-menthyl (3); R = Fc, R' = (CH(2))(2)O(CH(2))(2)OMe (4)) have been determined. In all cases only the trans isomer is obtained, consistent with solid state (31)P NMR data obtained for the bulk powder of 3. Crystallographic data for 2 (213 K): orthorhombic, Ibam, a = 12.434(5) A, b = 19.029(9) A, c = 11.760(4) A, V = 2782(2) A(3), Z = 4. Data for 3 (293 K): monoclinic, P2(1), a = 7.288(2) A, b = 12.676(3) A, c = 21.826(4) A, beta = 92.04(3) degrees, V = 2015.0(7) A(3), Z = 2. Data for 4 (213 K): monoclinic, P2(1)/n, a = 11.8564(7) A, b = 22.483(1) A, c = 27.840(2) A, beta = 91.121(1) degrees, V = 7419.8(8) A(3), Z = 8. Moreover, 1a-c react with [Au(2)(dppm)Cl(2)] to form new heterobridged trithiophosphonate complexes of the type [Au(2)(dppm)(S(2)P(S)R)] (R = Fc (12)). The luminescence properties of several structurally characterized complexes have been investigated. Each of the title compounds luminesces at 77 K. The results indicate that the nature of Au...Au interactions in the solid state has a profound influence on the optical properties of these complexes. 相似文献
2.
L. V. Gorobinskii K. A. Solntsev N. T. Kuznetsov 《Russian Journal of Coordination Chemistry》2002,28(7):451-453
Nucleophilic substitution reactions of the monosubstituted anions [B12H11X]2–, where X = OC(O)CH3, OH, SCN, and I, with pentanoic acid were studied. The obtained compounds were shown to contain the [B12H10X{OC(O)(CH2)3CH3}]2– anions. 相似文献
3.
Reactions of S4N4 with diphosphines, Ph2P(X)PPh2 (X = NC4H8N, CH2CH2) have resulted in the isolation of N3S3? NPPh2(X)Ph2PN? S3N3 (X = NC4H8N, CH2CH2), (S)PPh2(CH2CH2)Ph2PN? S3N3, and (S)PPh2NC4H8NPh2P(S) as new compounds. These heterocycles have been characterized by analytical and spectroscopic (IR, UV-VIS, 1H and 31P-NMR, and MS) techniques. 相似文献
4.
Sharutin V. V. Sharutina O. K. Koscheeva L. V. 《Russian Journal of General Chemistry》2021,91(5):840-843
Russian Journal of General Chemistry - Bismuth compounds Ph3Bi[OC(O)R]2 (R = CH2C6H4F-3, C6H3F2-2,3, C6HF4-2,3,4,5) were synthesized by the reaction of triphenylbismuth with a carboxylic acid and... 相似文献
5.
Khairallah GN O'Hair RA Bruce MI 《Dalton transactions (Cambridge, England : 2003)》2006,(30):3699-3707
Electrospray ionization of a mixture of the two gold phosphine chlorides, R3PAuCl (R = Ph and Me), silver nitrate and the amino acid N,N-dimethylglycine (DMG) yields a range of gold containing cluster ions including: (R3P)Au(PR'3)+; (R3PAu)(R'3PAu)Cl+ and (R3PAu)(R'3PAu)(DMG-H)+ (where R = R' = Ph; R = R' = Me; R = Me and R' = Ph). Collision induced dissociation (CID) of the (R3PAu)(R'3PAu)(DMG-H)+ precursor ions yielded the hitherto unknown gold hydride dimers (R3PAu)(R'3PAu)H+. The gas-phase chemistry of these dimers was studied using ion-molecule reactions, collision induced dissociation, electronic excitation dissociation (EED) and DFT calculations on the (H3PAu)2H+ model system. A novel phosphine ligand migration was found to occur prior to fragmentation under CID conditions and this was supported by DFT calculations, which revealed a transition state with a bridging phosphine ligand. 相似文献
6.
Averre CE Coles MP Crossley IR Day IJ 《Dalton transactions (Cambridge, England : 2003)》2012,41(1):278-284
The triphosphanes RMe(2)SiCH(2)P(PR'(2))(2) (R = Me, Ph; R' = SiMe(3), Cy) are synthesised in good yield via metathesis of organodichlorophosphanes and LiPR'(2), while for R' = Ph a propensity to form (Ph(2)P)(2) precludes isolation of the in situ characterised triphosphanes. Where R = Me and R' = SiMe(3) the triphosphane has also been characterised by single crystal X-ray diffraction and exhibits a single geometric conformer in the solid state, though solution-phase NMR spectra are indicative of facile conformational exchange across a wide temperature range. All of the described triphosphanes exhibit comparable behaviour, with their respective (31)P{(1)H} NMR spectra manifesting anomalous 'second-order' characteristics, which are considered using full spin-Hamiltonian simulation. Preliminary studies of coordination chemistry and ancillary reactivity of the triphosphanes are described. 相似文献
7.
The tris(arylthiolate)indium(III) complexes (4-RC(6)H(4)S)(3)In [R = H (5), Me (6), F (7)] were prepared from the 2:3 reaction of elemental indium and the corresponding aryl disulfide in methanol. Reaction of 5-7 with 2 equiv of the appropriate triorganylphosphine in benzene or toluene resulted in isolation of the indium-phosphine adduct series (4-RC(6)H(4)S)(3)In.PR'(3) [R = H, R' = Et (5a), Cy (5b), Ph (5c); R = Me, R' = Et (6a), Cy (6b), Ph (6c); R = F, R' = Et (7a), Cy (7b), Ph (7c)]. These compounds were characterized via elemental analysis, FT-IR, FT-Raman, solution (1)H, (13)C{(1)H}, (31)P{(1)H}, and (19)F (7a-c) NMR spectroscopy, and X-ray crystallography (5c, 6a, 6c, and 7a). NMR spectra show retention of the In-P bond in benzene-d(6) solution, with phosphine (31)P{(1)H} signals shifted downfield compared to the uncoordinated ligand. The X-ray structures show monomeric 1:1 adduct complexes in all cases. The In-P bond distance [2.5863(5)-2.6493(12) A] is influenced significantly by the phosphine substituents but is unaffected by the substituted phenylthiolate ligand. Relatively low melting points (88-130 degrees C) are observed for all adducts, while high-temperature thermal decomposition is observed for the indium thiolate reactants 5-7. DSC/TGA and EI-MS data show a two-step thermal decomposition process, involving an initial loss of the phosphine moiety followed by loss of thiolate ligand. 相似文献
8.
Tolpygin A. O. Linnikova O. A. Kovylina T. A. Cherkasov A. V. Fukin G. K. Trifonov A. A. 《Russian Chemical Bulletin》2020,69(6):1114-1121
Russian Chemical Bulletin - The reaction of tridentate amidine 2-[Ph2P(O)]C6H4NHC(But)=N(2,6-Me2C6H3) (1) containing the side-chain donor group Ph2P=O with NdCl[N(SiMe3)2]2 (2) in a molar ratio... 相似文献
9.
Luis Adrio Gemma Alberdi Adriana Amoedo Darío Lata Alberto Fernndez Javier Martínez M. Teresa Pereira Jos M. Vila 《无机化学与普通化学杂志》2005,631(11):2197-2203
Reaction of the thiosemicarbazone ligands C4H4NC(H)=NN(H)C(S)NHR (R = Me, a ; Et, b ) with Li2[PdCl4] gave the dinuclear complexes [Pd{C4H4NC(H)=NNC(S)NHR}(μ‐Cl)]2 (R = Me, 1a ; Et, 1b ) with a central Pd2Cl2 core and with deprotonation of the thiosemicarbazones at the hydrazinic nitrogen atom. Treatment of 1a and 1b with triphenylphosphine gave the mononuclear compounds [Pd{C4H4C(H)=NNC(S)NHR}(Cl)(PPh3)] (R = Me, 2a ; Et, 2b ), whereas reaction of 1a and 1b with tertiary diphosphines gave mono‐ and dinuclear compounds, as appropriate, with the corresponding diphosphine acting as a monodentate ( 6b ), chelating ( 3a ) and bridging ligand ( 4a, 5a , 4b, 5b ). Treatment of 1a and 1b with (Ph2PCH2CH2PPh2)W(CO)5 gave the new heterobimetallic complexes 7a and 7b . The crystal structures of complexes 3a and 4a are described. 相似文献
10.
11.
Skvortsov G. G. Cherkasov A. V. Fukin G. K. Trifonov A. A. 《Russian Chemical Bulletin》2015,64(12):2872-2878
Russian Chemical Bulletin - A reaction of o-N,N-dimethyltoluidine lithium derivative (o-Me2NC6H4CH2Li) with carbodiimides (RN=C=NR, where R = Pri, Cy) in THF at room temperature leads to lithium... 相似文献
12.
Phosphanediyl Transfer from Inversely Polarized Phosphaalkenes R1P=C(NMe2)2 (R1 = tBu, Cy, Ph, H) onto Phosphenium Complexes [(η5‐C5H5)(CO)2M=P(R2)R3] (R2 = R3 = Ph; R2 = tBu, R3 = H; R2 = Ph, R3 = N(SiMe3)2) Reaction of the freshly prepared phosphenium tungsten complex [(η5‐C5H5)(CO)2W=PPh2] ( 3 ) with the inversely polarized phosphaalkenes RP=C(NMe2)2 ( 1 ) ( a : R = tBu; b : Cy; c : Ph) led to the η2‐diphosphanyl complexes ( 9a‐c ) which were isolated by column chromatography as yellow crystals in 24‐30 % yield. Similarly, phosphenium complexes [(η5‐C5H5)(CO)2M=P(H)tBu] (M = W ( 6 ); Mo ( 8 )) were converted into (M = W ( 11 ); Mo ( 12 )) by the formal abstraction of the phosphanediyl [PtBu] from 1a . Treatment of [(η5‐C5H5)(CO)2W=P(Ph)N(SiMe3)2] ( 4 ) with HP=C(NMe2)2 ( 1d ) gave rise to the formation of yellow crystalline ( 10 ). The products were characterized by elemental analyses and spectra (IR, 1H, 13C‐, 31P‐NMR, MS). The molecular structure of compound 10 was elucidated by an X‐ray diffraction analysis. 相似文献
13.
14.
Jizhu Jin Shingo Tsubaki Toshiya Uozumi Tsuneji Sano Kazuo Soga 《Macromolecular rapid communications》1998,19(11):597-600
Polymerization of propylene was conducted at 0 ∼ 150°C with the [ArN(CH2)3NAr]TiCl2 (Ar = 2,6-iPr2C6H3) complex using a mixture of trialkylaluminium (AIR3, R = methyl, ethyl and isobutyl) and Ph3CB(C6F5)4 as cocatalyst. When AlMe3 or AlEt3 was employed, atactic polypropylene (PP) was selectively produced, whereas the use of Al(iBu)3 gave a mixture of atactic and isotactic PP. The isotactic index (I.I.; weight fraction of isotactic polymer) depended strongly upon the polymerization temperature, and the highest I.I. was obtained at ca. 40°C. The 13C NMR analysis of the isotactic polymer suggests that the isotactic polymerization proceeds by an enantiomorphic-site mechanism. It was also demonstrated that the present catalyst shows a very high regiospecificity. 相似文献
15.
Davies CJ Fawcett J Shutt R Solan GA 《Dalton transactions (Cambridge, England : 2003)》2005,(15):2630-2640
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b. 相似文献
16.
Sharutin V. V. Pakusina A. P. Zadachina O. P. Sharutina O. K. Gerasimenko A. V. Pushilin M. A. 《Russian Journal of Coordination Chemistry》2004,30(6):397-402
Tetraphenylantimony phenoxyacetate (I) was synthesized by reacting pentaphenylantimony with phenoxyacetic acid (at a molar ratio of 1 : 1) in toluene. Tetraphenylantimony ethylmalonate (II) was synthesized from triphenylantimony and malonic ether in the presence of hydrogen peroxide (1 : 1 : 1) in diethyl ether. According to X-ray diffraction data, Sb atoms in compounds I and II have a distorted trigonal bipyramidal coordination to the axial oxygen atoms. The axial OSbCax angles and Sb-Cax distances are, respectively, 176.31(6)° and 2.177(2) Å for I and 179.40(4)° and 2.162(1) Å for II. The Sb-Ceq distances lie in the intervals of 2.108(2)-2.127(2) Å for I and 2.117(1)-2.128(1) Å for II. In compounds I and II, the Sb-O bond lengths are equal to 2.235(1) Å and 2.250(1) Å, respectively, and the intramolecular contacts Sb··· are equal to 3.402(2) Å and 3.282(1) Å, respectively. 相似文献
17.
Autissier V Zarza PM Petrou A Henderson RA Harrington RW Clegg WC 《Inorganic chemistry》2004,43(10):3106-3115
The protonation of [Ni(SC(6)H(4)R-4)(triphos)](+) (triphos = PhP[CH(2)CH(2)PPh(2)](2); R = NO(2), Cl, H, Me, or MeO) by [lutH](+) (lut = 2,6-dimethylpyridine) to form [Ni(S(H)C(6)H(4)R-4)(triphos)](2+) is an equilibrium reaction in MeCN. Kinetic studies, using stopped-flow spectrophotometry, reveal that the reactions occur by a two-step mechanism. Initially, [lutH](+) rapidly binds to the complex (K(2)(R)) in an interaction which probably involves hydrogen-bonding of the acid to the sulfur. Subsequent intramolecular proton transfer from [lutH](+) to sulfur (k(3)(R)) is slow because of both electronic and steric factors. The X-ray crystal structures of [Ni(SC(6)H(4)R-4)(triphos)](+) (R = NO(2), H, Me, or MeO) show that all are best described as square-planar complexes, with the phenyl substituents of the triphos ligand presenting an appreciable barrier to the approach of the sterically demanding [lutH](+) to the sulfur. The kinetic characteristics of the intramolecular proton transfer from [lutH](+) to sulfur have been investigated. The rate of intramolecular proton transfer exhibits a nonlinear dependence on Hammett sigma(+), with both electron-releasing and electron-withdrawing 4-R-substituents on the coordinated thiolate facilitating the rate of proton transfer (NO(2) > Cl > H > Me < MeO). The rate constants for intramolecular proton transfer correlate well with the calculated electron density of the sulfur. The temperature dependence of the rate of the intramolecular proton transfer reactions shows that deltaH() is small but increases as the 4-R-substituent becomes more electron-withdrawing [deltaH = 4.1 (MeO), 6.9 (Me), 11.4 kcal mol(-)(1) (NO(2))], while DeltaS() becomes progressively less negative [deltaS = -50.1 (MeO), -41.2 (Me), -16.4 (NO(2)) cal K(-)(1) mol(-)(1)]. Studies with [lutD](+) show that the rate of intramolecular proton transfer varies with the 4-R-substituent [(k(3)(NO)2)(H)/(k(3)(NO)2)(D) = 0.39; (k(3)(Cl))(H)/(k(3)(Cl))(D) = 0.88; (k(3)(Me))(H)/(k(3)(Me))(D) = 1.3; (k(3)(MeO))(H)/(k(3)(MeO))(D) = 1.2]. 相似文献
18.
Ivan Bernal George M. Reisner Henri Brunner Georg Riepl 《Journal of organometallic chemistry》1985,284(1):115-128
The crystal structures and absolute configurations of (η5-C5H5)-CoI(NC4H3-C(R)=N(S)-CH(CH3)(C6H5)) (R = H, compound I; R = CH3, compound II) have been determined by single crystal X-ray diffraction. Crystals of compound I are orthorhombic, with a 11.084(6), b 12.107(6) and c 13.121(7) Å, space group P212121 and d (calcd, Z = 4) 1.69 g cm?3 The structure was solved by the Patterson technique and refined with use of full matrix least-squares methods to R(F) = 0.031 and Rw(F) = 0.028. Compound II is nearly isomorphous and isostructural; a 11.246(6), b 11.923(6) and c 13.370(7) Å, d(calc., Z = 4) 1.71 g cm?3 and was refined to the final agreement factors of R(F) = 0.044 and Rw(F) = 0.035. The Co atom has a distorted tetrahedral coordination, with Co-I 2.595(2) for I and 2.607(2) Å for II; Co-(η5-C5H5 ring centroid) 1.681(4) and 1.703(5) Å; Co-N(pyrrole) 1.905(9) and 1.885(9) Å; Co-N(imine) 1.971(8) and 2.003(9) Å, all the parameters being well within values found in the literature. The configuration around the chiral carbon of the phenylethylamine is S for both compounds, whereas the configuration around the metal is R in I and S in II. The different metal configurations in I and II have their origin in the two different substituents (R = H, CH3) at the imine carbon atoms of the chelate ring, which induce completely different conformations of the (S)-CH(CH3)(C6H5) moiety in the two complexes. For both compounds the thermodynamically less stable isomer is enriched upon crystallization. Also, for compound I the solution and solid state conformations are almost opposite to each other, the conformation in the solid reflecting intramolecular interactions (phenyl/C5H5 attraction). 相似文献
19.
Crispín Cristóbal Dr. Yohar A. Hernández Dr. Joaquín López‐Serrano Prof. Dr. Margarita Paneque Dr. Ana Petronilho Prof. Dr. Manuel L. Poveda Dr. Verónica Salazar Florencia Vattier Dr. Eleuterio Álvarez Dr. Celia Maya Prof. Dr. Ernesto Carmona 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(12):4003-4020
The reactivity of a series of iridium? pyridylidene complexes with the formula [TpMe2Ir(C6H5)2(C(CH)3C(R)N H] ( 1 a – 1 c ) towards a variety of substrates, from small molecules, such as H2, O2, carbon oxides, and formaldehyde, to alkenes and alkynes, is described. Most of the observed reactivity is best explained by invoking 16 e? unsaturated [TpMe2Ir(phenyl)(pyridyl)] intermediates, which behave as internal frustrated Lewis pairs (FLPs). H2 is heterolytically split to give hydride? pyridylidene complexes, whilst CO, CO2, and H2C?O provide carbonyl, carbonate, and alkoxide species, respectively. Ethylene and propene form five‐membered metallacycles with an IrCH2CH(R)N (R=H, Me) motif, whereas, in contrast, acetylene affords four‐membered iridacycles with the IrC(?CH2)N moiety. C6H5(C?O)H and C6H5C?CH react with formation of Ir? C6H5 and Ir? C?CPh bonds and the concomitant elimination of a molecule of pyridine and benzene, respectively. Finally the reactivity of compounds 1 a – 1 c against O2 is described. Density functional theory calculations that provide theoretical support for these experimental observations are also reported. 相似文献
20.
Hitchcock PB Huang Q Lappert MF Zhou M 《Dalton transactions (Cambridge, England : 2003)》2005,(18):2988-2993
The following crystalline oligonuclear metal alkyls have been synthesised under mild conditions and structurally characterised: [(THF)Li(mu-A)(mu-Cl)(mu3-OMe)Zn]2, [Li(mu-A)2Tl]2(4 and 4'), [Li4(mu-A)3(micro3-OMe)]5, [(mu-A)Li2(mu-A)2(mu3-OMe)Ce(A)](6) and [Ce(A)(mu2-OMe){mu2-OS(O)(CF3)O}]2(11)[= CH(SiMe3){SiMe(OMe)2}]. Compounds 2-6 were obtained from [Li(mu-A)]infinity(1) and ZnCl2(3), TlCl (4 and 4' and 5) and CeCl3(6), and 11 was isolated from K(A)(prepared from 1 + KOBu(t)) and cerium(III) triflate Ce(OTf)3. The principal novel features are (i) and (ii) as follows. As for (i), the diversity of ligand-to-metal bonding is noteworthy, the ligand being (a)C,O-bridging in 3{as in the known compounds 1 and in [Li2Mg5(mu3-OMe)6(mu2-OMe)2(mu2-A)4](2)}; (b)C,O,O'-bridging and O,O'-chelating in 4 and 4'; (c)C,O,O'-bridging in 5; (d)C,O,O'-bridging and C,O-chelating in 6; and (e)C,O-chelating in 11. Regarding (ii), it is interesting that the ligand [A]- is surprisingly ready to undergo fragmentation by Si-OMe cleavage and thereby present bridging methoxy ligands (mu2-OMe)2 to a pair of Ce3+ ions in 11, or mu3-OMe acting as a cap for triangular arrays of three hard metal ions (Mg3 in 2, LiZn2 in 3, Li3 in 5, and Li2Ce in 6). 相似文献