首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
EPR spectroscopy of labeled poly(ethylene oxide) (PEO) grafted on silica has been used to characterize the conformation and local dynamics of the chains. Grafted molecules of MW 2000 with grafting ratios of 0.045, 0.057, 0.126, and 0.42 molecules/nm2 were in contact with benzene. The mobility of the label was compared with that observed for solution of PEO from very diluted to highly concentrated and even bulk PEO. Thus, the concentration inside the grafted layer could be evaluated and also the thickness, which evolves rather linearly with the grafting ratio. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
5.
Temperature dependence of the EPR spectrum of 2-trifluoromethylnitrobenzene radical anion in anhydrous acetonitrile in the temperature range 217 K ≤ T ≤ 296 K was studied and simulated. Temperature-dependent dynamic modulation of the fluorine isotropic hyperfine structure is caused by slow hindered rotation of CF3 group with an activation energy of E F* = 36.5±0.5 kJ mol−1, which is the highest value for motions in π-type free radicals studied to date. Dedicated to the memory of Academician V. A. Koptyug on the occasion of the 75th anniversary of his birth. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 926–931, June, 2006.  相似文献   

6.
7.
The first two persistent silenyl radicals (R2C=Si.?R), with a half‐life (t1/2) of about 30 min, were generated and characterized by electron paramagnetic resonance (EPR) spectroscopy. The large hyperfine coupling constants (hfccs) (a(29Siα)=137.5–148.0 G) indicate that the unpaired electron has substantial s character. DFT calculations, which are in good agreement with the experimentally observed hfccs, predict a strongly bent structure (?C=Si?R=134.7–140.7°). In contrast, the analogous vinyl radical, R2C=C.?R (t1/2≈3 h), exhibits a small hfcc (a(13Cα)=26.6 G) and has a nearly linear geometry (?C=C?R=168.7°).  相似文献   

8.
Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin‐labeled in whole cells and outer membranes and interspin distances were measured to a spin‐labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein–protein/ligand interactions at surface‐exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.  相似文献   

9.
The reaction of the nitrone spin trap 5,5‐dimethylpyrroline‐N‐oxide (DMPO) with sodium (bi)sulfite in aqueous solutions was investigated using NMR and EPR techniques. Reversible nucleophilic addition of (bi)sulfite anions to the double bond of DMPO was observed, resulting in the formation of the hydroxylamine derivative 1‐hydroxy‐5,5‐dimethylpyrrolidine‐2‐sulfonic acid, with characteristic 1H and 13C NMR spectra. The reaction mechanism was suggested and corresponding equilibrium constants determined. The mild oxidation of the hydroxylamine results in the formation of an EPR‐detected spectrum identical with that for the DMPO adduct with sulfur trioxide anion radical. The latter demonstrates that a non‐radical addition reaction of (bi)sulfite with DMPO may contribute to the EPR detection of SO3?? radical. This possibility must be taken into account in spin trapping analysis of sulfite radical. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
13.
14.
One of the greatest current challenges in structural biology is to study protein dynamics over a wide range of timescales in complex environments, such as the cell. Among magnetic resonances suitable for this approach, electron paramagnetic resonance spectroscopy coupled to site-directed spin labeling (SDSL-EPR) has emerged as a promising tool to study protein local dynamics and conformational ensembles. In this work, we exploit the sensitivity of nitroxide labels to report protein local dynamics at room temperature. We demonstrate that such studies can be performed while preserving both the integrity of the cells and the activity of the protein under investigation. Using this approach, we studied the structural dynamics of the chaperone NarJ in its natural host, Escherichia coli. We established that spin-labeled NarJ is active inside the cell. We showed that the cellular medium affects NarJ structural dynamics in a site-specific way, while the structural flexibility of the protein is maintained. Finally, we present and discuss data on the time-resolved dynamics of NarJ in cellular context.  相似文献   

15.
16.
A new dinuclear manganese(II) complex was synthesised with the biscompartimental ligand 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-nitrophenol (NO(2)BpmpH) and characterised by X-ray crystallography. Magnetic susceptibility measurements revealed that the two high-spin Mn(II) ions are antiferromagnetically coupled with a singlet-to-triplet separation of 7.2 cm(-1). The powder EPR spectra were recorded for both X- and Q-bands between 1.8 K and 35 K. A detailed analysis of these spectra led to the determination of three out of five individual spin-state zero-field splitting parameters. From the proposed simulations, the exchange coupling constant J and the intermetallic distance have been computed.  相似文献   

17.
18.
19.
The 5‐diethoxyphosphonyl‐5‐methyl‐1‐pyrroline N‐oxide superoxide spin adduct (DEPMPO?OOH) is much more persistent (about 15 times) than the 5,5‐dimethyl‐1‐pyrroline N‐oxide superoxide spin adduct (DMPO?OOH). The diethoxyphosphonyl group is bulkier than the methyl group and its electron‐withdrawing effect is much stronger. These two factors could play a role in explaining the different half‐lifetimes of DMPO?OOH and DEPMPO?OOH. The trifluoromethyl and the diethoxyphosphonyl groups show similar electron‐withdrawing effects but have different sizes. We have thus synthesized and studied 5‐methyl‐5‐trifluoromethyl‐1‐pyrroline N‐oxide (5‐TFDMPO), a new trifluoromethyl analogue of DMPO, to compare its spin‐trapping performance with those of DMPO and DEPMPO. 5‐TFDMPO was prepared in a five‐step sequence by means of the Zn/AcOH reductive cyclization of 5,5,5‐trifluoro‐4‐methyl‐4‐nitropentanal, and the geometry of the molecule was estimated by using DFT calculations. The spin‐trapping properties were investigated both in toluene and in aqueous buffer solutions for oxygen‐, sulfur‐, and carbon‐centered radicals. All the spin adducts exhibit slightly different fluorine hyperfine coupling constants, thereby suggesting a hindered rotation of the trifluoromethyl group, which was confirmed by variable‐temperature EPR studies and DFT calculations. In phosphate buffer at pH 7.4, the half‐life of 5‐TFDMPO?OOH is about three times shorter than for DEPMPO?OOH and five times longer than for DMPO?OOH. Our results suggest that the stabilization of the superoxide adducts comes from a delicate balance between steric, electronic, and hydrogen‐bonding effects that involve the β group, the hydroperoxyl moiety, and the nitroxide.  相似文献   

20.
1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号