首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The discovery of proper ligands to simultaneously modulate the reactivity and effectively control the stereoselectivity is a central topic in the field of enantioselective C?H activation. Herein, we reported the synthesis of axially chiral biaryls by Pd‐catalyzed atroposelective C?H olefination. A novel chiral spiro phosphoric acid, STRIP, was identified as a superior ligand for this transformation. A broad range of axially chiral quinoline derivatives were synthesized in good yields with excellent enantioselectivities (up to 98 % ee). Density functional theory was used to gain a theoretical understanding of the enantioselectivities in this reaction.  相似文献   

2.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

3.
4.
Rhodium‐catalyzed ortho ‐C−H functionalization is well known in the literature. Described herein is the Xphos‐supported rhodium catalysis of meta ‐C−H olefination of benzylsulfonic acid and phenyl acetic acid frameworks with the assistance of a para ‐methoxy‐substituted cyano phenol as the directing group. Complete mono‐selectivity is observed for both scaffolds. A wide range of olefins and functional groups attached to arene are tolerated in this protocol.  相似文献   

5.
N‐arylcarbazole structures are important because of their prevalence in natural products and functional OLED materials. C?H amination of arenes has been widely recognized as the most efficient approach to access these structures. Conventional strategies involving transition‐metal catalysts suffer from confined substrate generality and the requirement of exogenous oxidants. Organocatalytic enantioselective C–N chiral axis construction remains elusive. Presented here is the first organocatalytic strategy for the synthesis of novel axially chiral N‐arylcarbazole frameworks by the assembly of azonaphthalenes and carbazoles. This reaction accommodates broad substrate scope and gives atropisomeric N‐arylcarbazoles in good yields with excellent enantiocontrol. This approach not only offers an alternative to metal‐catalyzed C–N cross‐coupling, but also brings about opportunities for the exploitation of structurally diverse N‐aryl atropisomers and OLED materials.  相似文献   

6.
Asymmetric C?H bond functionalization reaction is one of the most efficient and straightforward methods for the synthesis of optically active molecules. Herein we disclose an asymmetric C?H/C?H cross‐coupling reaction of ferrocenes with azoles such as oxazoles and thiazoles. Palladium(II)/monoprotected amino acid (MPAA) catalytic system which exhibits excellent reactivity and regioselectivity for oxazoles and thiazoles. This method offers a powerful strategy for constructing planar chiral ferrocenes. Mechanistic studies suggest that the C?H bond cleavage of azoles is likely proceeding through a SEAr process and may not be a turnover limiting step.  相似文献   

7.
Selectivity control in hydroarylation‐based C−H alkylation has been dominated by steric interactions. A conceptually distinct strategy that exploits the programmed switch in the C−H activation mechanism by means of cobalt catalysis is presented, which sets the stage for convenient C−H alkylations with unactivated alkenes. Detailed mechanistic studies provide compelling evidence for a programmable switch in the C−H activation mechanism from a linear‐selective ligand‐to‐ligand hydrogen transfer to a branched‐selective base‐assisted internal electrophilic‐type substitution.  相似文献   

8.
Compounds with stereogenic phosphorus atoms are frequently used as ligands for transition‐metal as well as organocatalysts. A direct catalytic enantioselective method for the synthesis of P ‐chiral compounds from easily accessible diaryl phosphinamides is presented. The use of rhodium(III) complexes equipped with a suitable atropochiral cyclopentadienyl ligand is shown to enable an enantiodetermining C−H activation step. Upon trapping with alkynes, a broad variety of cyclic phosphinamides with a stereogenic phosphorus(V) atom are formed in high yields and enantioselectivities. Moreover, these can be reduced enantiospecifically to P ‐chiral phosphorus(III) compounds.  相似文献   

9.
An efficient organocatalytic atroposelective three‐component cascade reaction of 2,3‐diketoesters, aromatic amines, and 1,3‐cyclohexanediones has been developed for the highly enantioselective synthesis of axially chiral N‐arylindoles. The success of this method derives from the use of a newly developed second‐generation chiral spirocyclic phosphoric acid as the catalyst. In addition, this protocol was extended to the synthesis of an axially chiral monophosphorus ligand.  相似文献   

10.
A chiral Brønsted base catalyzed asymmetric annulation of ortho‐alkynylanilines has been developed to access axially chiral naphthyl‐C2‐indoles via vinylidene ortho‐quinone methide (VQM) intermediates. This strategy provides a unique organocatalytic atroposelective route to axially chiral aryl‐C2‐indole skeletons with excellent enantioselectivity and functional‐group tolerance. This transformation was applicable to decagram‐scale preparation (50.0 g) with perfect enantioselectivity through simple recrystallization. Moreover, the utility of this reaction was demonstrated by a variety of transformations towards chiral naphthyl‐C2‐indoles for a series of carbon–heteroatom bond formations. Furthermore, the prepared axially chiral naphthyl‐C2‐indoles were applied as a chiral skeleton for organocatalytic aza‐Baylis–Hillman reaction and asymmetric formal [4+2] tandem cyclization to give the corresponding adducts in high yields with improved enantioselectivity and diastereoselectivity.  相似文献   

11.
A Pd‐catalyzed spirocyclization involving a sequential carbopalladation, intramolecular C−H activation, and a highly regioselective alkyne insertion to afford spirooxindoles and spirodihydrobenzofurans has been achieved. The spirocyclic products were generated in good to excellent yields with complete regiocontrol in a readily scalable procedure.  相似文献   

12.
A highly selective palladium‐catalyzed allenic C−H bond oxidation was developed, and it provides a novel and straightforward synthesis of [3]dendralene derivatives. A variety of [3]dendralenes with diverse substitution patterns are accessible with good efficiency and high stereoselectivity. The reaction tolerates a broad substrate scope containing various functional groups on the allene moiety, including ketone, aldehyde, ester, and phenyl groups. Also, a wide range of olefins with both electron‐donating and electron‐withdrawing aryls, acrylate, sulfone, and phosphonate groups are tolerated.  相似文献   

13.
Branched selectivity in asymmetric allylic C?H alkylation is enabled by using 2‐acylimidazoles as nucleophiles in the presence of a chiral phosphoramidite‐palladium catalyst. A wide range of terminal alkenes, including 1,4‐dienes and allylarenes, are nicely tolerated and provide chiral 2‐acylimidazoles in moderate to high yields and with high levels of regio‐, and enantio‐, and E/Z‐selectivities. Mechanistic studies using density‐functional theory calculations suggest a nucleophile‐coordination‐enabled inner‐sphere attack mode for the enantioselective carbon–carbon bond‐forming event.  相似文献   

14.
Pyridine activation by inexpensive iron catalysts has great utility, but the steps through which iron species can break the strong (105–111 kcal mol−1) C−H bonds of pyridine substrates are unknown. In this work, we report the rapid room‐temperature cleavage of C−H bonds in pyridine, 4‐tert‐butylpyridine, and 2‐phenylpyridine by an iron(I) species, to give well‐characterized iron(II) products. In addition, 4‐dimethylaminopyridine (DMAP) undergoes room‐temperature C−N bond cleavage, which forms a dimethylamidoiron(II) complex and a pyridyl‐bridged tetrairon(II) square. These facile bond‐cleaving reactions are proposed to occur through intermediates having a two‐electron reduced pyridine that bridges two iron centers. Thus, the redox non‐innocence of the pyridine can play a key role in enabling high regioselectivity for difficult reactions.  相似文献   

15.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

16.
Dibenzocyclooctadiene lignans are an interesting class of molecules because of their unique structure based on an axially chiral biaryl moiety as well as their significant biological activity. Herein, we describe the development of a palladium‐catalyzed atroposelective C−H alkynylation and its application in gram‐scale, stereocontrolled formal syntheses of (+)‐isoschizandrin and (+)‐steganone. tert‐Leucine was identified as an efficient, catalytic transient chiral auxiliary. A wide range of enantiomerically enriched biaryl compounds were prepared by this approach in good yields (up to 99 %) with excellent enantioselectivity (up to >99 % ee).  相似文献   

17.
The first enantioselective construction of a new class of axially chiral naphthyl‐indole skeletons has been established by organocatalytic asymmetric coupling reactions of 2‐naphthols with 2‐indolylmethanols (up to 99 % yield, 97:3 e.r.). This approach not only affords a new type of axially chiral heterobiaryl backbone, but also provides a new catalytic enantioselective strategy for constructing axially chiral biaryl scaffolds by making use of the C3‐electrophilicity of 2‐indolylmethanols.  相似文献   

18.
19.
The palladium‐catalyzed asymmetric synthesis of enone‐based atropisomers from 2‐iodo‐3‐methylcyclohex‐2‐enones and aryl boronic acid is reported. BoPhoz‐type phosphine–aminophosphine ligands showed superior enantioselectivity over other ligands. These cyclohexenone‐based atropisomers are useful compounds for further elaboration. The divergent synthesis of biaryl atropisomers with different ortho substituents was demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号