首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Ring‐opening metathesis copolymerizations of cyclooctene and the polyhedral oligomeric silsesquioxane (POSS) monomer 1‐[2‐(5‐norbornen‐2‐yl)ethyl]‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo[9.5.1.13,9.15,15.17,13] octasiloxane (POSS–norbornylene) were performed with Grubbs's catalyst, RuCl2(?CHPh)(PCy3)2. Random copolymers were formed and fully characterized with POSS loadings as high as 55 wt %. Diimide reduction of these copolymers afforded polyethylene–POSS random copolymers. Thermogravimetric analysis of the polyethylene–POSS copolymers under air showed a 70 °C improvement, relative to a polyethylene control sample of similar molecular weight, in the onset of decomposition temperature based on 5% mass loss. The homopolymer of POSS–norbornylene was also synthesized. This polymer had a rigid backbone according to 1H NMR evidence of broad olefinic signals. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2920–2928, 2001  相似文献   

2.
Ou J  Zhang Z  Lin H  Dong J  Wu M  Zou H 《Electrophoresis》2012,33(11):1660-1668
Hydrophobic organic-inorganic hybrid monolithic columns were synthesized via thermally initiated free radical polymerization with the confines of 75 μm id capillary using a polyhedral oligomeric silsesquioxane (POSS) reagent containing eight or more methacrylate groups as the crosslinker. Three organic functional monomers, butyl methacrylate (BuMA), lauryl methacrylate (LMA) and methacrylic acid (MAA), were selected and copolymerized with the POSS in the presence of 1-propanol and 1,4-butanediol to prepare the poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths, respectively. The 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was copolymerized as ionizable monomer into the poly(POSS-co-BuMA) and poly(POSS-co-LMA) for the generation of EOF in capillary electrochromatography (CEC). A hybrid poly(POSS-co-LMA-co-MAA) monolith was also similarly prepared by copolymerizing ternary monomers of POSS, LMA, and MAA, and compared with poly(POSS-co-BuMA), poly(POSS-co-LMA), and poly(POSS-co-MAA) monoliths. The resulting four kinds of POSS-contained hybrid monoliths exhibited good permeability and mechanical stability. Their column efficiencies were evaluated by the separation of alkylbenzene homologues and polar compounds in CEC. The results indicated that the highest efficiencies of 194,100 and 102,100 theoretical plates per meter for thiourea and benzene were obtained on the poly(POSS-co-LMA-co-MAA) monolith. Additionally, the poly(POSS-co-LMA-co-MAA) monolith exhibited better selectivity for separation of polar compounds than those of other hybrid monoliths.  相似文献   

3.
A novel open‐tubular CEC column coated with chitosan‐graft‐(β‐CD) (CDCS) was prepared using sol‐gel technique. In the sol‐gel approach, owing to the 3D network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55 000~163 000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol‐gel‐derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol‐gel‐coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS‐bonded capillary column.  相似文献   

4.
The simultaneous ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) and 2‐hydroxyethyl methacrylate (HEMA) polymerization via reversible addition fragmentation chain transfer (RAFT) chemistry and the possible access to graft copolymers with degradable and nondegradable segments is investigated. HEMA and ε‐CL are reacted in the presence of cyanoisopropyl dithiobenzoate (CPDB) and tin(II) 2‐ethylhexanoate (Sn(Oct)2) under typical ROP conditions (T > 100 °C) using toluene as the solvent in order to lead to the graft copolymer PHEMA‐g‐PCL. Graft copolymer formation is evidenced by a combination of size‐exclusion chromatography (SEC) and NMR analyses as well as confirmed by the hydrolysis of the PCL segments of the copolymer. With targeted copolymers containing at least 10% weight of PHEMA and relatively small PHEMA backbones (ca. 5,000–10,000 g mol?1) the copolymer grafting density is higher than 90%. The ratio of free HEMA‐PCL homopolymer produced during the “one‐step” process was found to depend on the HEMA concentration, as well as the half‐life time of the radical initiator used. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3058–3067, 2008  相似文献   

5.
Organocatalysis offers a number of prospects in the polymer community and presents advantages over metal based and bio‐organic methods. The use of organic molecules for performing chemical reactions is not a new concept, and any research into organocatalytic reactions builds on a respected history. Compared to the organocatalysis of large lactones, which began in the early 2000s, the examples presented here will demonstrate that few metal‐free initiating systems had been applied to β‐lactones well before the beginning of the current millennium. These metal‐free initiating systems present indisputable advantages over metal‐based processes. In the following paper, ring‐opening polymerizations (ROPs) of various β‐lactones for the preparation of poly(hydroxyalkanoate)s will be presented, as will the types of mechanisms involved, that is, zwitterionic and anionic, and cationic or supramolecular‐based ROPs. The advantages and drawbacks of the different technics will be discussed in the domain, which, for us, is important in the overall production of bioplastics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 657–672  相似文献   

6.
To avoid organometallic catalysts in the synthesis of poly(1,5‐dioxepan‐2‐one), the enzymatic ring‐opening polymerization of 1,5‐dioxepan‐2‐one (DXO) was performed with lipase CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between the number‐average molecular weight and monomer conversion was observed, and this suggested that the product molecular weight could be controlled by the stoichiometry of the reactants. The monomer consumption followed a first‐order rate law with respect to the monomer, and no chain termination occurred. Water acted as a chain initiator, but it could cause polymer hydrolysis when it exceeded an optimum level. An initial activation via the heating of the enzyme was sufficient to start the polymerization, as the monomer conversion occurred when samples were left at room temperature after an initial heating at 60 °C. A high lipase content led to a high monomer conversion as well as a high molecular weight. An increase in the monomer conversion and molecular weight was observed when the polymerization temperature was increased from 40 to 80 °C. A further increase in the polymerization temperature led to a decrease in the monomer conversion and molecular weight because of the denaturation of the enzyme at elevated temperatures. The polymerization behavior of DXO under lipase CA catalysis was compared with that of ε‐caprolactone (CL). The rate of monomer conversion of DXO was much faster than that of CL, and this may have been due to differences in their specificity toward lipase CA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4206–4216, 2005  相似文献   

7.
Neodymium‐based catalysts coordinated with phosphate ligands (NdCl3·3L), where L = triethyl phosphate (TEP) or tris(2‐ethylhexyl) phosphate (TEHP), were synthesized. The ring‐opening polymerizations (ROP) of ɛ‐caprolactone (ɛ‐CL) with these catalysts in the presence of benzyl alcohol initiator were performed, yielding polymers with well‐defined molecular weights and relatively narrow polydispersity index (PDI = 1.22–1.65). In situ NMR analysis of the reaction between NdCl3·3TEP and benzyl alcohol indicated that ROP proceeds through a coordination‐insertion mechanism. The end groups of the resultant polymers were determined using MALDI‐ToF mass spectrometry and NMR spectroscopy. The quasi‐living nature of this catalytic system was demonstrated by kinetic studies and the successful synthesis of the block copolymer poly(ɛ‐caprolactone)‐block‐poly(l ‐lactide) by sequential monomer addition. Kinetic studies revealed that the catalyst with the bulkier TEHP ligand increased the rate of ROP of ɛ‐CL as compared to the TEP ligand. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1289–1296  相似文献   

8.
Submicron, non‐porous, chiral silica stationary phase has been prepared by the immobilization of functionalized β‐CD derivatives to isocyanate‐modified silica via chemical reaction and applied to the pressurized capillary electrochromatography (pCEC) enantio‐separation of various chiral compounds. The submicron, non‐porous, cyclodextrin‐based chiral stationary phases (sub_μm‐CSP2) exhibited excellent chiral recognition of a wide range of analytes including clenbuterol hydrochloride, mexiletine hydrochloride, chlorpheniramine maleate, esmolol hydrochloride, and metoprolol tartrate. The synthesized submicron particles were regularly spherical and uniformly non‐porous with an average diameter of around 800 nm and a mean pore size of less than 2 nm. The synthesized chiral stationary phase was packed into 10 cm × 100 μm id capillary columns. The sub_μm‐CSP2 column used in the pCEC system showed better separation of the racemates and at a higher rate compared to those used in the capillary liquid chromatography mode (cLC) system. The sub_μm‐CSP2 possessed high mechanical strength, high stereoselectivity, and long lifespan, demonstrating rapid enantio‐separation and good resolution of samples. The column provided an efficiency of up to 170 000 plates/m for n‐propylbenzene.  相似文献   

9.
Ring‐opening polymerization of ε‐caprolactone (ε‐CL) was carried out using β‐diketiminato‐supported monoaryloxo ytterbium chlorides L1Yb(OAr)Cl(THF) (1) [L1 = N,N′‐bis(2,6‐dimethylphenyl)‐2,4‐pentanediiminato, OAr = 2,6‐di‐tert‐butylphenoxo‐], and L2Yb(OAr′)Cl(THF) (2) [L2 = N,N′‐bis(2,6‐diisopropylphenyl)‐2,4‐pentanediiminato, OAr′ = 2,6‐di‐tert‐butyl‐4‐methylphenoxo‐], respectively, as single‐component initiator. The influence of reaction conditions, such as polymerization temperature, polymerization time, initiator, and initiator concentration, on the monomer conversion, molecular weight, and molecular weight distribution of the resulting polymers was investigated. Complex 1 was well characterized and its crystal structure was determined. Some features and kinetic behaviors of the CL polymerization initiated by these two complexes were studied. The polymerization rate is first order with respect to monomer. The Mn of the polymer increases linearly with the increase of the polymer yield, while polydispersity remained narrow and unchanged throughout the polymerization in a broad range of temperatures from 0 to 50 °C. The results indicated that the present system has a “living character”. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1147–1152, 2006  相似文献   

10.
A novel o‐phenanthroline‐immobilized ionic‐liquid‐modified hybrid monolith for capillary electrochromatography was synthesized based on chloropropyl‐silica, which was prepared by the in situ polymerization of tetramethoxysilane and 3‐chloropropyltrimethoxysilane via a sol–gel process. The morphology of the hybrid monolith was characterized by scanning electron microscopy, and relatively stable anodic electroosmotic flow was observed under a broad pH ranged from pH 3.0 to 9.0. The separation mechanism was investigated by separating four neutral molecules (toluene, dimethylformamide, formamide, and thiourea). The obtained hybrid monolith possessed an obviously reversed‐phase retention mechanism, but when the acetonitrile content in the mobile phase was >90% v/v, a weak hydrophilic mechanism was observed on the resultant o‐phenanthroline‐modified chloropropyl‐silica hybrid monolith. The reproducibility of the column was also investigated by measuring relative standard deviations of the migration time for four neutral molecules. Relative standard deviations of run to run (n = 3), day to day (n = 3), and column to column (n = 3) were in the range of 0.4–0.7, 0.9–2.1, and 1.4–3.3%, respectively. Basic separations of various polar analytes including phenols and aromatic amines were successfully achieved.  相似文献   

11.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

12.
13.
Bis‐ligated, homoleptic magnesium complexes 1–3 were synthesized through the reaction of 1 equiv. dibutyl magnesium with 2 equiv. β‐ketiminato ligands bearing different substituents on the nitrogen atom and 8 position on benzocyclohexanone. All of the complexes were identified by nuclear magnetic resonance (NMR) and X‐ray crystallography. Complexes 2 and 3 adopted distorted tetrahedral geometry around Mg, by chelating of two ancillary ligands, while complex 1 adopted a dimeric structure with penta‐coordination around Mg. These complexes can be used as efficient catalysts for the ring‐opening polymerization of L‐lactide, ε‐caprolactone, δ‐valerolactone (δ‐VL) and trimethylene carbonate in the presence of alcohol as a co‐initiator. With the increasing steric bulk of the ancillary ligands, the catalytic activity of Mg complexes was improved significantly. Particularly, complex 3 having the largest steric hindrance showed excellent catalytic performance for the polymerization of δ‐VL. It could polymerize 800 equiv. δ‐VL in 10 min, and produce polyvalerolactone with narrow molecular weight distributions (Mw/Mn < 1.2) at 35°C or higher temperature. No transesterification side reaction was observed. Moreover, complex 3 exhibited good tolerance to excessive alcohol and an immortal polymerization characteristic. The mechanism studies by in situ NMR demonstrated a coordination‐insertion process. Besides, it revealed that the steric bulky substituents in the active species derived from the complex and alcohol prevented the metal center from deactivation.  相似文献   

14.
The efficacy of a metal‐silsesquioxane, namely, heptaisobutyl (isopropoxyde)titanium‐polyhedral oligomeric silsesquioxanes (Ti‐POSS), as initiator of the ring‐opening polymerization of L ‐lactide (LLA) has been assessed. Indeed, as demonstrated by proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC) measurements, a well‐controlled polymerization occurs via a coordination‐insertion mechanism. Moreover, the above reaction leads to the direct insertion of the silsesquioxane molecule into the polymer backbone, thus producing a hybrid system. Differential scanning calorimetry measurements demonstrated that in comparison with a commercial poly‐L ‐lactide (PLLA), the polymers prepared with Ti‐POSS exhibit a higher crystallinity. Indeed, the presence of silsesquioxane molecules, attached to one end of the polymer chains, has been found to appreciably affect the crystal nucleation density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A series of efficient zinc catalysts supported by sterically bulky benzotriazole phenoxide ( BTP ) ligands are synthesized and structurally characterized. The reactions of diethyl zinc (ZnEt2) with CMe2PhBTP ‐H, t‐BuBTP ‐H, and TMClBTP ‐H yield monoadduct [(μ‐ BTP )ZnEt]2 ( 1 – 3 ), respectively. Bisadduct complex [( t‐BuBTP )2Zn] ( 4 ) results from treatment of ZnEt2 with t‐BuBTP ‐H (2 equiv.) in toluene, but treatment of TMClBTP ‐H with ZnEt2 in the same stoichiometric proportion in Et2O produces five‐coordinated monomeric complex [( TMClBTP )2Zn(Et2O)] ( 5 ). The molecular structures of compounds 1 , 4 , and 5 are characterized by X‐ray crystal structure determinations. All complexes 1 – 5 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) in the presence of 9‐anthracenemethanol. Experimental results indicate that complex 3 exhibits the greatest activity with well‐controlled character among these complexes. The polymerizations of ε‐CL and β‐butyrolactone catalyzed by 3 are demonstrated in a “living” character with narrow polydispersity indices (monomer‐to‐initiator ratio in the range of 25–200, PDIs ≤ 1.10). The “immortal” character of 3 provides a way to synthesize as much as 16‐fold polymer chains of poly(ε‐CL) (PCL) with narrow PDI in the presence of a catalyst in a small proportion. The controlled fashion of complex 3 also enabled preparation of the PCL‐b‐poly(3‐hydroxybutyrate) copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Using three different catalysts, water‐initiated polymerizations of ε‐caprolactone were conducted in bulk with variation of the monomer/water ratio. The resulting CH2OH and CO2H‐ terminated polylactones were subjected in situ to azeotropic polycondensations. With Bi‐triflate and temperatures, the polycondensations were not much successful and involved side reactions. With ZnCl2, and especially SnCl2, considerably higher molar masses were achieved. The substitution of toluene for chlorobenzene for refluxing gave better results. The polycondensations broadened the molar mass distribution of the ROP‐based prepolymers, and polydispersities between 1.4–1.8 were obtained. The MALDI–TOF mass spectra revealed that the polycondensations significantly enhanced the fraction of rings due to efficient “end‐biting” reactions. By comparison with copolymerization experiments and Sn methoxide‐initiated polymerizations, it was demonstrated that equilibration reactions, such as the formation of rings by “back‐biting,” did not occur. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
This contribution describes the synthesis and ring‐opening (co)polymerization of several L ‐lysine N‐carboxyanhydrides (NCAs) that contain labile protective groups at the ?‐NH2 position. Four of the following L ‐lysine NCAs were investigated: N?‐trifluoroacetyl‐L ‐lysine N‐carboxyanhydride, N?‐(tert‐butoxycarbonyl)‐L ‐lysine N‐carboxyanhydride, N?‐(9‐fluorenylmethoxycarbonyl)‐L ‐lysine N‐carboxyanhydride, and N?‐(6‐nitroveratryloxycarbonyl)‐L ‐lysine N‐carboxyanhydride. In contrast to the harsh conditions that are required for acidolysis of benzyl carbamate moieties, which are usually used to protect the ?‐NH2 position of L ‐lysine during NCA polymerization, the protective groups of the L ‐lysine NCAs presented here can be removed under mildly acidic or basic conditions or by photolysis. As a consequence, these monomers may allow access to novel peptide hybrid materials that cannot be prepared from ?‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys NCA) because of side reactions that accompany the removal of the Z groups. By copolymerization of these L ‐lysine NCAs with labile protective groups, either with each other or with γ‐benzyl‐L ‐glutamate N‐carboxyanhydride or Z‐Lys NCA, orthogonally side‐chain‐protected copolypeptides with number‐average degrees of polymerization ≤20 were obtained. Such copolypeptides, which contain different side‐chain protective groups that can be removed independently, are interesting for the synthesis of complex polypeptide architectures or can be used as scaffolds for the preparation of synthetic antigens or protein mimetics. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1167–1187, 2003  相似文献   

18.
Cobalt complexes 1 – 4 bearing N,O‐chelate ligands based on condensation products of 1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone with aniline, o‐methylaniline, α‐naphthylamine, and p‐nitroaniline, respectively, were synthesized, and the structures of 1 and 4 were characterized by single‐crystal X‐ray diffraction analyses. The bis(β‐ketoamine) cobalt complexes could act as moderately active catalyst precursors for norbornene polymerization with the activation of methylaluminoxane. This catalytic reaction proceeded mainly through a vinyl‐type polymerization mechanism. 1H NMR and IR showed that in all cases, a small amount of double bonds raised from ring‐opening metathesis polymerization (ROMP) was present in the polymerization products. The variation of the polymerization conditions affected the ROMP unit ratio in the polynorbornenes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5535–5544, 2005  相似文献   

19.
In the present study, n‐butyl acrylate macromonomer (BAMM) (Mn = 1900 g mol?1; PDI = 1.96) has been synthesized via a high‐temperature polymerization process. Subsequently, the olefinic termini of the BAMM have been transformed into a diol via a dihydroxylation process using KMnO4 as an oxidizing agent. The OH‐terminated macroinitiator pBA(OH)2 has subsequently been employed for the ring‐opening polymerization (ROP) of ε‐caprolactone via various catalytic systems, that is, organo‐(1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene), metal (tin(II) 2‐ethylhexanoate), and enzymatic catalysis (Novozym® 435). The obtained pBA‐b‐pCL block copolymers and the initiation efficiency of the BAMM macroinitiator have been investigated via size exclusion chromatography (SEC), electrospray ionization–mass spectrometry (ESI‐MS) hyphenated with SEC and liquid chromatography at the critical conditions of both poly(ε‐caprolactone) (pCL) and pBA. The in vitro enzyme catalysis (eROP) approach proved to be the most efficient catalysis system due to minor transesterification side reactions during the polymerization process. However, side reactions such as transesterifications occur in each catalytic system and—while they cannot be suppressed—they can be minimized. The species generated during the eROP process include the desired block copolymer pBA‐b‐pCL as main species as well as pCL homopolymer and residual macroinitiator pBA(OH)2. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号