首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

2.
The ability to precisely and remotely modulate reversible binding interactions between biomolecules and abiotic surfaces is appealing for many applications. To achieve this level of control, an azobenzene‐based optical switch is added to nanoparticle‐binding peptides in order to switch peptide conformation and attenuate binding affinity to gold surfaces via binding and dissociation of peptides.  相似文献   

3.
Chondrocalcinosis is a metabolic disease caused by the presence of calcium pyrophosphate dihydrate crystals in the synovial fluid. The goal of our endeavor was to find out whether short peptides could be used as a dissolving factor for such crystals. In order to identify peptides able to dissolve crystals of calcium pyrophosphate, we screened through a random library of peptides using a phage display. The first screening was designed to select phages able to bind the acidic part of alendronic acid (pyrophosphate analog). The second was a catalytic assay in the presence of crystals. The best-performing peptides were subsequently chemically synthesized and rechecked for catalytic properties. One peptide, named R25, turned out to possess some hydrolytic activity toward crystals. Its catalysis is Mg2+-dependent and also works against soluble species of pyrophosphate.  相似文献   

4.
Early and accurate detection of hepatocellular carcinoma (HCC) is essential to improve the prognosis of patients and reduce the morbidity of surgical therapy. Glypican‐3 (GPC3) is a protein abnormally expressed in HCC that has been identified as a serological and histochemical HCC marker. A novel peptide that specifically recognizes GPC3 will facilitate early detection of HCC and guide the treatment strategy. Herein, phage display screening technology is utilized to obtain a GPC3 binding peptide (GBP) using HCC cells expressing GPC3 in varying abundances. After seven rounds of panning, a peptide with sequence of THVSPNQGGLPS is identified with 735.2 ± 53.6 × 10−9 m affinity to GPC3. The ability to target GPC3 in vivo is evaluated by intravenous injection of GBP labeled with a near‐infrared dye, Cy5.5, into a HCC tumor‐bearing mouse model. Significant high tumor accumulation (tumor/muscle ratio: 6.49 ± 0.55) of Cy5.5‐GBP in HepG2 tumors is observed compared with that of the low GPC3 expressing prostate cancer cell line, PC3 (tumor/muscle ratio: 1.15 ± 0.32). By targeting GPC3, GBP differentiates tumor tissues from normal liver tissues in patients, suggesting a great clinical translation potency of GBP. Collectively, GBP demonstrates great potential for HCC detection via fluorescent imaging or histological staining.

  相似文献   


5.
6.
In the development of new energetic materials, the main challenge is the combination of high energy content with chemical and mechanical stability, two properties that are often contradictory. In this study, the syntheses and comprehensive characterizations of 4,5‐bis(tetrazole‐5‐yl)‐1,2,3‐triazole and the novel 4,5‐bis(1‐hydroxytetrazole‐5‐yl)‐1,2,3‐triazole, as well as their energetic properties, are presented, combining the advantages of the more energetic tetrazole and the more stable 1,2,3‐triazole rings. Nitrogen‐rich salts of both compounds were synthesized to investigate their detonation performances and combustion behavior calculated by computer codes for potential application in erosion‐reduced gun propellant mixtures due to their high nitrogen content. The structures of several of the compounds were studied by single‐crystal X‐ray diffraction and, especially in the case of 4,5‐bis(tetrazol‐5‐yl)‐1,2,3‐triazole, revealed the site of deprotonation.  相似文献   

7.
8.
Blocking quorum sensing (QS) pathways has attracted considerable interest as an approach to suppress virulence in bacterial pathogens. Toward this goal, we recently developed analogues of a native autoinducing peptide (AIP‐III) signal that can inhibit AgrC‐type QS receptors and attenuate virulence phenotypes in Staphylococcus aureus. Application of these compounds is limited, however, as they contain hydrolytically unstable thioester linkages and have only low aqueous solubilities. Herein, we report amide‐linked AIP analogues with greatly enhanced hydrolytic stabilities and solubilities relative to our prior analogues, whilst maintaining strong potencies as AgrC receptor inhibitors in S. aureus. These compounds represent powerful tools for the study of QS.  相似文献   

9.
We report design, synthesis and evaluation of a series of naphthalenediimides (NDIs) that are bridged with short peptides. Reminiscent of peptide stapling technologies, the macrocycles are conveniently accessible by a chromogenic nucleophilic aromatic substitution of two bromides in the NDI core with two thiols from cysteine sidechains. The dimension of core‐bridged NDIs matches that of one turn of an α helix. NDI‐stapled peptides exist as two, often separable atropisomers. Introduction of tertiary amine bases in amino‐acid sidechains above the π‐acidic NDI surface affords operational anion‐π catalysts. According to an enolate chemistry benchmark reaction, anion‐π catalysis next to peptides occurs with record chemoselectivity but weak enantioselectivity. Catalytic activity drops with increasing distance of the amine base to the NDI surface, looser homocysteine bridges, mismatched, shortened and elongated α‐helix turns, and acyclic peptide controls. Elongation of isolated turns into short α helices significantly increases activity. This increase is consistent with remote control of anion‐π catalysis from the α‐helix macrodipole.  相似文献   

10.
Transition‐metal‐catalyzed C?H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late‐stage peptide macrocyclization methods by palladium‐catalyzed site‐selective C(sp2)?H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp–alkene crosslinks.  相似文献   

11.
The low response rate and adaptive resistance of PD‐1/PD‐L1 blockade demands the studies on novel therapeutic targets for cancer immunotherapy. We discovered that a novel immune checkpoint TIGIT expressed higher than PD‐1 in many tumors especially anti‐PD‐1 resistant tumors. Here, mirror‐image phage display bio‐panning was performed using the d ‐enantiomer of TIGIT synthesized by hydrazide‐based native chemical ligation. d ‐peptide DTBP‐3 was identified, which could occupy the binding interface and effectively block the interaction of TIGIT with its ligand PVR. DTBP‐3 showed proteolytic resistance, tumor tissue penetrating ability, and significant tumor suppressing effects in a CD8+ T cell dependent manner. More importantly, DTBP‐3 could inhibit tumor growth and metastasis in anti‐PD‐1 resistant tumor model. This is the first d ‐peptide targeting TIGIT, which could serve as a potential candidate for cancer immunotherapy.  相似文献   

12.
β Helices—helices formed by alternating d,l ‐peptides and stabilized by β‐sheet hydrogen bonding—are found naturally in only a handful of highly hydrophobic peptides. This paper explores the scope of β‐helical structure by presenting the first design and biophysical characterization of a hydrophilic d,l ‐peptide, 1 , that forms a β helix in methanol. The design of 1 is based on the β‐hairpin/β helix—a new supersecondary that had been characterized previously only for hydrophobic peptides in nonpolar solvents. Incorporating polar residues in 1 provided solubility in methanol, in which the peptide adopts the expected β‐hairpin/β‐helical structure, as evidenced by CD, analytical ultracentrifugation (AUC), NMR spectroscopy, and NMR‐based structure calculations. Upon titration with water (at constant peptide concentration), the structure in methanol ( 1 m ) transitions cooperatively to an extended conformation ( 1 w ) resembling a cyclic β‐hairpin; observation of an isodichroic point in the solvent‐dependent CD spectra indicates that this transition is a two‐state process. In contrast, neither 1 m nor 1 w show cooperative thermal melting; instead, their structures appear intact at temperatures as high as 65 °C; this observation suggests that steric constraint is dominant in stabilizing these structures. Finally, the 1H NMR CαH spectroscopic resonances of 1 m are downfield‐shifted with respect to random‐coil values, a hitherto unreported property for β helices that appears to be a general feature of these structures. These results show for the first time that an appropriately designed β‐helical peptide can fold stably in a polar solvent; furthermore, the structural and spectroscopic data reported should prove useful in the future design and characterization of water‐soluble β helices.  相似文献   

13.
Recently, we developed methods to stabilize peptides into various secondary structures, including α‐helix, type III turn and β‐hairpin via proper thioether based macrocyclization. These conformationally constrained peptidomimetics confer enhanced biophysical properties and provide a valuable avenue towards clinically‐relevant therapeutic molecules. In this personal account, thioether‐derived macrocyclization methods developed by our group for stabilization of α‐helix, type‐III β turn and β‐hairpin conformations are discussed.  相似文献   

14.
We report a general and operationally simple method for the solid phase synthesis of α‐ketoamide peptides using standard Fmoc solid phase peptide synthesis. The method delivers deprotected peptide α‐ketoamides directly upon resin cleavage without any additional steps, and tolerates all side chain functional groups. A small collection of C‐terminal and internal α‐ketoamide peptides – including two reported protease inhibitors (HCV and SUB1) – were prepared in good yields. In addition, we demonstrate that our method serves as versatile platform for the convenient preparation of cyclic α‐ketoamide peptides, photocagged peptide α‐ketoamides, and fluorescently labeled peptides.  相似文献   

15.
A novel process for synthesizing nylon‐6 and poly(?‐caprolactone) by microwave irradiation of the respective monomers, ?‐caprolactam and ?‐caprolactone, is described. The ring opening of ?‐caprolactam to produce nylon‐6 was performed in a microwave oven by the forward power being controlled to about 90–135 W in the presence of an ω‐aminocaproic acid catalyst (10 mol %) and for periods of 1–3 h at temperatures varying from 250 to 280 °C. The ring opening of ?‐caprolactone to produce poly(?‐caprolactone) was performed in a microwave oven by the forward power being controlled to about 70–100 W for a period of 2 h in the presence of stannous octoate with and without 1,4‐butanediol over a temperature range of 150–200 °C. The yields, conditions of the reactions, and properties of the products generated relative to the thermal processes are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2264–2275, 2002  相似文献   

16.
Oligomeric and protofibrillar aggregates formed by the amyloid‐β peptide (Aβ) are believed to be involved in the pathology of Alzheimer’s disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40. Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid‐state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel‐like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C‐terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40.  相似文献   

17.
The synthesis, structures and catalytic activities of three organolanthanide complexes supported by the H3tpa ligand (H3tpa = tris(pyrrolyl‐α‐methyl) amine) are described. Treatment of H3tpa with one equivalent of Ln[N(SiMe3)2]3 (Ln = Sc, Sm, Dy) in THF gives, after recrystallization from toluene/THF solution, Sc(tpa)(THF)2 ( 1 ), Sm(tpa)(THF)3 ( 2 ) and Dy(tpa)(THF)3 ( 3 ) in good yields. The structures of complexes 1 – 3 were determined by single‐crystal X‐ray diffraction and elemental analysis. Complexes 2 and 3 exhibited good catalytic activity for the polymerization of ?‐caprolactone.  相似文献   

18.
The ligands 2‐pyrazol‐1‐yl‐1H‐indole (HL1) and 2‐ 1 , 2 , 4 ‐triazol‐1‐yl‐1H‐indole (HL2) individually reacted with Ti(NMe2)4 in tetrahydrofuran to form the corresponding complexes Ti(L1)2(NMe2)2 ( 1 ) and Ti(L2)2(NMe2)2 ( 2 ), respectively. The titanium complexes were fully characterized by NMR measurement and elemental analysis as well as the single‐crystal X‐ray diffraction of 1 and 2 . Both 1 and 2 exhibit high activities towards intermolecular hydroamination of terminal alkynes with high selectivity, and they also efficiently promote the ring‐opening polymerization of ?‐caprolactone.  相似文献   

19.
An addition to the family : The introduction of β‐amino acid residues into a modified amyloid β peptide fragment resulted in well‐defined helical nanoribbons (see cryo‐TEM image) comprising β strands mainly oriented perpendicular to the ribbon axis. The nanoribbons order into a flow‐aligning nematic phase at higher concentration. The β‐strand nanoribbon structure is an addition to the known set of secondary structures adopted by β‐peptides.

  相似文献   


20.
A 12‐membered cyclic diamide monomer for nylon 64 was successfully synthesized in fairly high yield (~45%). The synthesis conditions were varied to see the effect of the diamine and succinyl chloride reactants on yield. Threefold excess of 1,6‐hexamethylenediamine (HDA) gave the highest yield, while further increasing the amount of HDA decreased the yield. Using N,N‐diisopropylethylamine as acid scavenger resulted in the formation of two different cyclic amides, which were fully analyzed by 1H and 13C solution nuclear magnetic resonance spectrometry and mass spectrometry. Copolymerization of cyclic amides with ε‐caprolactam via an anionic route gave a block copolyamide with a two distinct endotherms in the differential scanning calorimetry analysis. However, copolymerization by the hydrolytic route gave only nylon 6 with terminal 64 units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 96–103  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号