首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rhodium‐catalyzed C(sp2)−H functionalization reactions of 4‐aryl‐5‐pyrazolones followed by [3+2] annulation reactions with alkynes provide rapid access to highly enantioenriched five‐membered‐ring 4‐spiro‐5‐pyrazolones. The use of a chiral SCpRh catalyst enabled the synthesis of a large range of spiropyrazolones with all‐carbon quaternary stereogenic centers in up to 99 % yield and 98 % ee from readily available substrates.  相似文献   

2.
We disclose the first asymmetric activation of a non‐activated aliphatic C?F bond in which a conceptually new desymmetrization of 1,3‐difluorides by silicon‐induced selective C?F bond scission is a key step. The combination of a cinchona alkaloid based chiral ammonium bifluoride catalyst and N,O‐bis(trimethylsilyl)acetoamide (BSA) as the silicon reagent enabled the efficient catalytic cycle of asymmetric Csp3?F bond cleavage under mild conditions with high enantioselectivities. The ortho effect of the aryl group at the prostereogenic center is remarkable. This concept was applied for the asymmetric synthesis of promising agrochemical compounds, 3,5‐diaryl‐5‐fluoromethyloxazolidin‐2‐ones bearing a quaternary carbon center.  相似文献   

3.
An enantioselective C−H addition to a C=C bond represents the most atom‐efficient route for the construction of chiral carbon–carbon skeletons, a central research topic in organic synthesis. We herein report the enantioselective yttrium‐catalyzed C(sp3)−H bond addition of 2‐methyl azaarenes, such as 2‐methyl pyridines, to various substituted cyclopropenes and norbornenes. This process efficiently afforded a new family of chiral pyridylmethyl‐functionalized cyclopropane and norbornane derivatives in high yields and high enantioselectivities (up to 97 % ee ).  相似文献   

4.
The first asymmetric hydrogenation of in situ generated isochromenylium derivatives is enabled by tandem catalysis with a binary system consisting of Cu(OTf)2 and a chiral cationic ruthenium–diamine complex. A range of chiral 1H ‐isochromenes were obtained in high yields with good to excellent enantioselectivity. These chiral 1H ‐isochromenes could be easily transformed into isochromanes, which represent an important structural motif in natural products and biologically active compounds. The chiral induction was rationalized by density functional theory calculations.  相似文献   

5.
We herein report the development of a conformationally defined, electron‐rich, C2‐symmetric, P‐chiral bisphosphorus ligand, ArcPhos, by taking advantage of stereoelectronic effects in ligand design. With the Rh‐ArcPhos catalyst, excellent enantioselectivities and unprecedentedly high turnovers (TON up to 10 000) were achieved in the asymmetric hydrogenation of aliphatic carbocyclic and heterocyclic tetrasubstituted enamides, to generate a series of chiral cis‐2‐alkyl‐substituted carbocyclic and heterocyclic amine derivatives in excellent enantiomeric ratios. This method also enabled an efficient and practical synthesis of the Janus kinase inhibitor (R)‐tofacitinib.  相似文献   

6.
The enantioselective synthesis of highly functionalized chiral cyclopent‐2‐enones by the reaction of alkynyl malonate esters with arylboronic acids is described. These desymmetrizing arylative cyclizations are catalyzed by a chiral phosphinooxazoline/nickel complex, and cyclization is enabled by the reversible E/Z isomerization of alkenylnickel species. The general methodology is also applicable to the synthesis of 1,6‐dihydropyridin‐3(2H)‐ones.  相似文献   

7.
A chiral Brønsted base catalyzed asymmetric annulation of ortho‐alkynylanilines has been developed to access axially chiral naphthyl‐C2‐indoles via vinylidene ortho‐quinone methide (VQM) intermediates. This strategy provides a unique organocatalytic atroposelective route to axially chiral aryl‐C2‐indole skeletons with excellent enantioselectivity and functional‐group tolerance. This transformation was applicable to decagram‐scale preparation (50.0 g) with perfect enantioselectivity through simple recrystallization. Moreover, the utility of this reaction was demonstrated by a variety of transformations towards chiral naphthyl‐C2‐indoles for a series of carbon–heteroatom bond formations. Furthermore, the prepared axially chiral naphthyl‐C2‐indoles were applied as a chiral skeleton for organocatalytic aza‐Baylis–Hillman reaction and asymmetric formal [4+2] tandem cyclization to give the corresponding adducts in high yields with improved enantioselectivity and diastereoselectivity.  相似文献   

8.
Reported herein is an asymmetric [3+2] cycloaddition reaction of azomethine ylides with β‐trifluoromethyl β,β‐disubstituted enones, a reaction which is enabled by a Ming‐Phos‐derived copper(I) catalyst (Ming‐Phos=chiral sulfinamide monophosphines, Figure 2 ). This method provides scalable and efficient access to the highly substituted pyrrolidines with a trifluoromethylated, all‐carbon quaternary stereocenter in good yields with up to greater than 20:1 d.r. and 98 % ee. The reaction has a broad substrate scope and tolerates a wide range of functional groups.  相似文献   

9.
An enantioselective intermolecular addition reaction of azlactones, as carbon nucleophiles, with styrene derivatives, as simple olefins, was demonstrated using a newly developed chiral Brønsted acid catalyst, namely, F10BINOL‐derived N‐triflyl phosphoramide. Addition products having vicinal tetrasubstituted carbon centers, one of which is an all‐carbon quaternary stereogenic center, were formed in good yields with moderate to high stereoselectivities. Extremely high acidity of the new chiral Brønsted acid was confirmed by its calculated pKa value based on DFT studies and is the key to accomplishing not only high catalytic activity but also efficient stereocontrol in the intermolecular addition.  相似文献   

10.
This study investigates the ability of functionalized multiwalled carbon nanotubes (MWCNTs) for enantio‐separation of metoprolol chiral forms. 2Hydroxypropyl‐β‐cyclodextrin (2HP‐β‐CD) was applied as a chiral selector to functionalize carbon nanotubes (CNTs). The modified multiwalled CNT samples were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. The results of analyses showed that CNTs were successfully cross‐linked with 2HP‐β‐CD. To evaluate the enantio‐separation property of the products, the separation of metoprolol chiral forms on the initial and final products was examined. Further, UV–visible spectroscopy and polarimeter analyses were used for characterization. The results indicate that MWCNT does not have any intrinsic enantio‐separation ability, although its selectivity for enantio‐separation can be enhanced by cross‐linking it to 2HP‐β‐CD. Moreover, the optimal mass of adsorbent as well as optimal mass of functional groups is estimated to achieve maximum enantio‐separation efficiency. The results indicate that applying large amounts of 2HP‐β‐CD to CNTs functionalization decreases the cross‐linking efficiency, which consequently reduces enantio‐separation efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A highly efficient kinetic resolution of racemic amino alcohols has been achieved for the first time with a chiral tin catalyst. A chiral organotin compound with 3,4,5‐trifluorophenyl groups at the 3,3′‐positions of the binaphthyl framework enabled this transformation with excellent yield and high enantioselectivity. The process tolerates aryl‐ and alkyl‐substituted amino alcohols and a variety of other substrates, affording the corresponding products in high enantioselectivity and with s factors up to >500.  相似文献   

12.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

13.
A novel, mixed‐ligand chiral rhodium(II) catalyst, Rh2(S‐NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S‐NTTL)3(dCPA) reveals a “chiral crown” conformation with a bulky dicyclohexylphenyl acetate ligand and three N‐naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium‐catalyzed bicyclobutanation/ copper‐catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8 % overall yield and 92 % ee.  相似文献   

14.
The first enantioselective dearomatizative spirocyclization of 1‐hydroxy‐N‐aryl‐2‐naphthamide derivatives has been accomplished by chiral organoiodine catalysis to stereoselectively create an all‐carbon stereogenic center, providing a straightforward approach to access spirooxindole derivatives in good yields and with high to excellent levels of enantioselectivity. Chiral hypervalent phenyl‐λ3‐iodanes generated in situ from the oxidation of the chiral phenyl iodine actually participate in the asymmetric oxidative dearomatizative spirocyclization reaction.  相似文献   

15.
Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non‐natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l ‐phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over‐expressing 4–10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high‐value chiral chemicals. In addition, combining the non‐natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose.  相似文献   

16.
We describe herein a catalytic, enantioselective process for the synthesis of 4H‐chromenes which are important structural elements of many natural products and biologically active compounds. A sequence comprising a conjugate addition of β‐diketones to in situ generated ortho‐quinone methides followed by a cyclodehydration reaction furnished 4‐aryl‐4H‐chromenes in generally excellent yields and high optical purity. A BINOL‐based chiral phosphoric acid was employed as a Brønsted acid catalyst which converted ortho‐hydroxy benzhydryl alcohols into hydrogen‐bonded ortho‐quinone methides and effected the carbon–carbon bond‐forming event with high enantioselectivity.  相似文献   

17.
A catalytic strategy was developed for asymmetric substitution reactions at sp3‐hybridized carbon atoms by using a chiral alkylating agent generated in situ from trichloroacetimidate and a chiral phosphoric acid. The resulting chiral p‐methoxybenzyl phosphate selectively reacts with β‐amino alcohols rather than those without a β‐NH functionality. The use of an electronically and sterically tuned chiral phosphoric acid enables the kinetic resolution of amino alcohols through p‐methoxybenzylation with good enantioselectivity.  相似文献   

18.
Novel cinchona alkaloid derived chiral phase‐transfer catalysts enabled the highly chemo‐, regio‐, diastereo‐, and enantioselective umpolung addition of trifluoromethyl imines to α,β‐unsaturated N‐acyl pyrroles. With a catalyst loading ranging from 0.2 to 5.0 mol %, this new catalytic asymmetric transformation provides facile and high‐yielding access to highly enantiomerically enriched chiral trifluoromethylated γ‐amino acids and γ‐lactams.  相似文献   

19.
Enantiodivergent, catalytic reduction of activated alkenes relays stereochemical information encoded in the antipodal chiral catalysts to the pro‐chiral substrate. Although powerful, the strategy remains vulnerable to costs and availability of sourcing both catalyst enantiomers. Herein, a stereodivergent hydrogenation of α,β‐unsaturated phosphonates is disclosed using a single enantiomer of the catalyst. This enables generation of the R‐ or S‐configured β‐chiral phosphonate with equal and opposite selectivity. Enantiodivergence is regulated at the substrate level through the development of a facile EZ isomerisation. This has been enabled for the first time by selective energy transfer catalysis using anthracene as an inexpensive organic photosensitiser. Synthetically valuable in its own right, this process enables subsequent RhI‐mediated stereospecific hydrogenation to generate both enantiomers of the product using only the S‐catalyst (up to 99:1 and 3:97 e.r.). This strategy out‐competes the selectivities observed with the E‐substrate and the R‐catalyst.  相似文献   

20.
Twofold C?H annulation of readily available formamides and alkynes without built‐in chelating groups was achieved. Ni?Al bimetallic catalysis enabled by a bulky BINOL‐derived chiral secondary phosphine oxide (SPO) ligand proved to be critical for high reactivity and high selectivity. This reaction uses readily available formamides as starting materials and provides a concise synthetic pathway to a broad range of chiral ferrocenes in 40–98 % yield and 93–99 % ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号