首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
In this article, a decoupled and linearized compact finite difference scheme is proposed for solving the coupled nonlinear Schrödinger equations. The new scheme is proved to preserve the total mass and energy which are defined by using a recursion relationship. Besides the standard energy method, an induction argument together with an H1 technique are introduced to establish the optimal point‐wise error estimate of the proposed scheme. Without imposing any constraints on the grid ratios, the convergence order of the numerical solution is proved to be of with mesh size h and time step τ. Numerical results are reported to verify the theoretical analysis, and collision of two solitary waves are also simulated. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 840–867, 2017  相似文献   

3.
We consider the Cauchy problem for the third‐order nonlinear Schrödinger equation where and is the Fourier transform. Our purpose in this paper is to prove the large time asymptoitic behavior of solutions for the defocusing case λ > 0 with a logarithmic correction under the non zero mass condition Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
5.
In this paper, we investigate the fourth‐order nonlinear Schrödinger equation with parameterized nonlinearity that is generalized from regular cubic‐quintic formulation in optics and ultracold physics scenario. We find the exact solution of the fourth‐order generalized cubic‐quintic nonlinear Schrödinger equation through modified F‐expansion method, identifying the particular bright soliton behavior under certain external experimental setting, with the system's particular nonlinear features demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
We perform a multiple scale analysis on the fourth order nonlinear Schrödinger equation in the Hamiltonian form together with the Hamiltonian function. We derive, as amplitude equations, Korteweg‐de Vries flow equations in the bi‐Hamiltonian form with the corresponding Hamiltonian functions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we discuss the coupled modified nonlinear Schrödinger (CMNLS) equation, which describe the pulse propagation in the picosecond or femtosecond regime of the birefringent optical fibers. By use of the Fokas approach, the initial‐boundary value problem for the CMNLS equation related to a 3×3 matrix Lax pair on the half‐line is to be analyzed. Assuming that the solution {u(x,t),v(x,t)} of CMNLS equation exists, we will prove that it can be expressed in terms of the unique solution of a 3×3 matrix Riemann‐Hilbert problem formulated in the plane of the complex spectral parameter λ. Moreover, we also get that some spectral functions s(λ) and S(λ) are not independent of each other but meet a global relationship.  相似文献   

8.
9.
We study the defocusing nonlinear Schrödinger (NLS) equation written in hydrodynamic form through the Madelung transform. From the mathematical point of view, the hydrodynamic form can be seen as the Euler–Lagrange equations for a Lagrangian submitted to a differential constraint corresponding to the mass conservation law. The dispersive nature of the NLS equation poses some major numerical challenges. The idea is to introduce a two‐parameter family of extended Lagrangians, depending on a greater number of variables, whose Euler–Lagrange equations are hyperbolic and accurately approximate NLS equation in a certain limit. The corresponding hyperbolic equations are studied and solved numerically using Godunov‐type methods. Comparison of exact and asymptotic solutions to the one‐dimensional cubic NLS equation (“gray” solitons and dispersive shocks) and the corresponding numerical solutions to the extended system was performed. A very good accuracy of such a hyperbolic approximation was observed.  相似文献   

10.
In the present paper, we consider the dissipative coupled fractional Schrödinger equations. The global well‐posedness by the contraction mapping principle is obtained. We study the long time behavior of solutions for the Cauchy problem. We prove the existence of global attractor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, by using the Nehari manifold approach in combination with periodic approximations, we obtain the sufficient conditions on the existence of the nontrivial ground state solutions of the periodic discrete coupled nonlinear Schrödinger equations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
13.
In this article, a conservative compact difference scheme is presented for the periodic initial‐value problem of Klein–Gordon–Schrödinger equation. On the basis of some inequalities about norms and the priori estimates, convergence of the difference solution is proved with order O(h42) in maximum norm. Numerical experiments demonstrate the accuracy and efficiency of the compact scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
15.
16.
Local exact controllability of the one‐dimensional NLS (subject to zero‐boundary conditions) with distributed control is shown to hold in a H1‐neighbourhood of the nonlinear ground state. The Hilbert Uniqueness Method (HUM), due to Lions, is applied to the linear control problem that arises by linearization around the ground state. The application of HUM crucially depends on the spectral properties of the linearized NLS operator which are given in detail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we study the nonlinear Schrödinger equation on Zoll manifolds with odd order nonlinearities. We will obtain the local well‐poesdness in the critical space . This extends the recent results in the literature to the Zoll manifolds of dimension d≥2 with general odd order nonlinearities and also partially improves the previous results in the subcritical spaces of Yang to the critical cases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We consider a discrete‐time orthogonal spline collocation scheme for solving Schrödinger equation with wave operator. The scheme is proposed recently by Wang et al. (J Comput Appl Math 235 (2011), 1993–2005) and is showed to have high‐order convergence rate when a parameter θ in the scheme is not less than $\frac{1}{4}$. In this article, we show that the result can be extended to include $\theta\in(0,\frac{1}{4})$ under an assumption. Numerical example is given to justify the theoretical result. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
The purpose of this article is to apply nonconforming finite element(FE) to solve a generalized nonlinear Schrödinger equation. First, a new important property of nonconforming FE (see ( 2.3 ) of Lemma 2 below) is proved by use of BHX lemma and the integral identities techniques. Second, a linearized Crank‐Nicolson fully discrete scheme is constructed and the superclose error estimate of order for original variable u in broken H1‐norm is also derived by using the properties of element and the splitting argument for nonlinear terms, while previous works always only obtain convergent error estimates with this element. Furthermore, the global superconvergence is arrived at by the interpolated postprocessing technique. Finally, two numerical experiments are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and τ is the time step.  相似文献   

20.
A conservative two‐grid finite element scheme is presented for the two‐dimensional nonlinear Schrödinger equation. One Newton iteration is applied on the fine grid to linearize the fully discrete problem using the coarse‐grid solution as the initial guess. Moreover, error estimates are conducted for the two‐grid method. It is shown that the coarse space can be extremely coarse, with no loss in the order of accuracy, and still achieve the asymptotically optimal approximation as long as the mesh sizes satisfy in the two‐grid method. The numerical results show that this method is very effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号