首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first copper‐catalyzed intramolecular C(sp3)? H and C(sp2)? H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)? H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2)? H amidation. Kinetic isotope effect (KIE) studies indicated that C? H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

2.
A novel magnetically recoverable catalyst was produced by coordinative attachment of Co(II) salophen complex to silica iminopyridine (SIPy)-functionalized-γ-Fe2O3 magnetic nanoparticles (SMNP@SIPy/Co(II) salophen). The vibration spectra and compositional data provided sufficient evidences for the structural integrity of as-prepared organic–inorganic nanohybrid. The magnetic nanocatalyst proved to be an efficient and selective heterogeneous catalyst for oxidation of different benzylic alcohols and featured higher catalytic activity and stability than that of homogenous counterpart. A TOF of 151 h−1 and TON of more than 322 were obtained for oxidation of 4-cholrobenzyl alcohol in this catalytic system. The supported catalyst could easily be recovered from the reaction mixture by an external magnetic field and reused for subsequent experiments with consistent catalytic activity.  相似文献   

3.
α‐MnO2 nanocrystals supported on graphene oxide (α‐MnO2/GO) was prepared through a soft chemical route and evaluated for the first time as a novel, eco‐friendly and efficient catalyst in the coupling reaction of alcohols and amines to imines. The well‐organized α‐MnO2/GO was characterized using various techniques. The results show that MnO2 nanocrystals are highly dispersed on the GO sheets and interconnected with each other, leading to large available surface area, which greatly enhances the catalytic performance of conventional MnO2. Under mild conditions, the catalyst exhibits excellent catalytic activity and selectivity with O2 serving as terminal oxidant. Various imines can be smoothly obtained in good to excellent yield. Importantly, the catalyst is easily recovered and can be reused six times with no significant loss of activity.  相似文献   

4.
The catalytic activity of l ‐arginine‐coated nano‐Fe3O4 particles (Fe3O4@l ‐arginine) proves they are a novel magnetic catalyst without the use of heat and reflux for the synthesis of 1,3‐diaryl‐2‐N‐azaphenalene derivatives and n‐acyl‐1,3‐diaryl‐2‐N‐azaphenylene derivatives in a one‐pot pseudo‐five‐component condensation reaction of compounds of 2,7‐naphthalene diol, aldehydes, and ammonia derivatives (ammonium acetate or ammonium hydrogen phosphate) and solvent (water and alcohol) with high yield and short reaction times, economical, and simple workup. The structure and magnetic properties of the obtained nanoparticles were characterized via Fourier transform infrared spectroscopy (IR) and field emission scanning electron microscopy (FE‐SEM). The results demonstrated that the average size of the synthesized magnetite nanoparticles is about 21 nm. In addition, the heterogeneous catalyst can be easily recovered magnetically and can be reused for further runs without significant loss of its catalytic activity.  相似文献   

5.
Fuberidazole has been successfully immobilized onto nano-Fe3O4 supported (3-chloropropyl)trimethoxysilane (3-CPTS) leading to a novel functionalized magnetic nanoparticle (FB/MNP). The Pd(0) complex, Pd-FB/MNP, was prepared by grafting Pd (OAc)2 on FB/MNP and subsequent reduction of a synthesized Pd (II) complex using NaBH4. Pd-FB/MNP has been characterized by FT-IR, SEM, TGA, XRD, ICP, EDS, BET and VSM. The Pd(0) complex proved to be an efficient phosphine- and halide-free recyclable heterogeneous catalyst for Suzuki as well as for Stille C-C coupling reactions showing high catalytic activity (up to 98%). Its catalytic activity in both reactions has been studied in PEG-400 as a green solvent. Besides, the selectivity of aryl iodide and aryl bromide over aryl chloride is observed during the C-C coupling reaction. The catalyst could be recovered easily from the reaction mixture using an external magnet device and recycled several times without considerable loss in activity. Additionally, the results of a palladium leaching test of the nano-catalyst demonstrate that no leaching of Pd took place during the C-C coupling process making the procedure environmentally friendly.  相似文献   

6.
The acid‐catalyzed benzylic and allylic alkylation of protic nucleophiles is fundamentally important for the formation of carbon? carbon and carbon? heteroatom bonds, and it is a formidable challenge for benzylic and allylic amine derivatives to be used as the alkylating agents. Herein we report a highly efficient benzylic and allylic alkylation of protic carbon and sulfur nucleophiles with sulfonamides through double Lewis acid catalyzed cleavage of sp3 carbon–nitrogen bonds at room temperature. In the presence of a catalytic amount of inexpensive ZnCl2‐TMSCl (TMSCl: chlorotrimethylsilane), 1,3‐diketones, β‐keto esters, β‐keto amides, malononitrile, aromatic compounds, thiols, and thioacetic acid can couple with a broad range of tosyl‐activated benzylic and allylic amines to give diversely functionalized products in good to excellent yields and with high regioselectivity. Furthermore, the cross‐coupling reaction of 1,3‐dicarbonyl compounds with benzylic propargylic amine derivatives has been successfully applied to the one‐step synthesis of polysubstituted furans and benzofurans.  相似文献   

7.
The first copper‐catalyzed intramolecular C(sp3) H and C(sp2) H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3) H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2) H amidation. Kinetic isotope effect (KIE) studies indicated that C H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

8.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

9.
Supported palladium catalyst (Pd/Fe3O4@SiO2) was easily prepared by supporting PdCl2 on silica‐coated magnetic nanoparticles Fe3O4 in ethylene glycol. The as‐prepared sample was characterized by infrared spectroscopy (IR), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS). The formation of active specie Pd(0) was confirmed by XRD and XPS, and the Pd loading for the fresh and recovered catalyst was determined by atomic absorption spectroscopy (AAS). Pd/Fe3O4@SiO2 was employed for the synthesis of biphenyl derivatives via Suzuki reaction. In terms of the yield of biphenyl, the supported catalyst displayed nearly equal catalytic performance to that of homologous PdCl2 under microwave irradiation for 30 min but higher than that obtained by traditional heating method for 12 h. The catalytic performance of Pd/Fe3O4@SiO2 for Suzuki reactions involving various aryl halides and arylboronic acids were also examined. Impressive yield of biphenyl at 68.2% was obtained even in the presence of unreactive aryl chlorides. Pd/Fe3O4@SiO2 was recovered by a permanent magnet and directly reused in the next run, and no obvious deactivation was observed for up to 6 times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A practical general method for asymmetric intermolecular benzylic C(sp3)?H amination has been developed by combining the pentafluorobenzyl sulfamate PfbsNH2 with the chiral rhodium(II) catalyst Rh2(S‐tfptad)4. Various substrates can be used as limiting components and converted to benzylic amines with excellent yields and high levels of enantioselectivity. Additional key features for the reaction are the low catalyst loading and the ability to remove the Pfbs group under mild conditions to give NH‐free benzylic amines.  相似文献   

11.
The catalytic activity of UiO‐66@Fe3O4@SiO2 catalyst was investigated in the fixation of carbon dioxide with epoxides under mild conditions. In this manner, a facile magnetization of UiO‐66 was achieved simultaneously by simply mixing this metal–organic framework and silica‐coated Fe3O4 nanoparticles in solution under sonication. The prepared catalyst was characterized using Fourier transform infrared and UV–visible spectroscopies, X‐ray diffraction, transmission and field emission scanning electron microscopies, N2 adsorption and inductively coupled plasma atomic emission spectroscopy. This new heterogeneous catalyst was applied as a highly efficient catalyst in the coupling of carbon dioxide with epoxides at mild temperatures and pressures. Furthermore, it could be easily recovered with the assistance of an external magnetic field and reused three consecutive times without significant loss of activity and mass.  相似文献   

12.
3(2H)‐Furanones are efficiently generated from 3‐alkynyl oxireno[2,3‐b]chromenones by an Au/DDQ‐catalyzed domino reaction through a pathway composed of cyclization, C? C cleavage, nucleophilic addition, oxidation, and nucleophilic addition. It was found that stoichiometric AuCl3 or catalytic Au with stoichiometric DDQ can oxidize the benzylic sp3 C? H bond to facilitate nucleophilic addition.  相似文献   

13.
In this work, the use of Fe3O4/geraphene oxide nanocomposite as an efficient catalyst for the synthesis of 5-sulfanyltetrazole derivatives of indoles, pyrroles, and 5-alkyl sulfanyltetrazoles is described. These compounds are readily obtained by the reaction of the starting heterocycles indoles, N-aryl pyrroles, alkyl thiocyanates, and trimethylsilyl azide in good to excellent yields. Moreover, Fe3O4/GO nanocomposite could be easily separated from the reaction mixtures by an external permanent magnet and reused at least six times continuously without significant reduction in the product yield and its catalytic activity.  相似文献   

14.
Nano‐scale zero‐valent Iron (nZVI) attached on the Fe3O4 nanoparticles were prepared and creatively applied in the reductive dechlorination of Carbon Tetrachloride (CT). The characterization results of the synthesized composite indicated a main component of nZVI particles assembled on the surface of Fe3O4 with a layer of iron‐oxide film on the periphery, of which the dispersibility was better and the specific surface area was larger. The effects of different reaction conditions like temperature, initial pH values, Fe0@Fe3O4 dosage and initial CT concentrations on the removal of CT were evaluated. Under the optimum conditions, the Fe0@Fe3O4 composites showed a CT removal efficiency of 89.1% in 60 min, which was much greater than that of nZVI (61.7%) and Fe3O4 particles (14.3%). The removal process obeyed the pseudo‐first‐order kinetic model. Synergy effects of the constituents in the composite which can promote the relative rates of mass transfer to reactive sites were proposed to be existed and the magnetism of Fe3O4 could help to overcome the aggregation and surface passivation problem of nZVI. Thus, Fe0@Fe3O4 nanoparticles in our study can effectively complete the reductive dechlorination of CT and an improved nZVI catalyst is provided for the remediation of chlorinated organic compounds.  相似文献   

15.
Selective bromination of γ‐methylene C(sp3)−H bonds of aliphatic amides and δ‐methylene C(sp3)−H bonds of nosyl‐protected alkyl amines are developed using NBS as the brominating reagent and catalytic amount of CuII/phenanthroline complexes as the catalyst. Aryl and benzylic C−H bonds at other locations remain intact during this directed radical abstraction reaction.  相似文献   

16.
A magnetically separable graphitic carbon nitride nanocomposite (Fe3O4/g‐C3N4) as a catalyst for the three‐component condensation reactions of carbonyl compounds, amines and trimethylsilylcyanide was thoroughly investigated. The reaction of these three components was found to be efficient, economical and green and took place in the presence of a catalytic amount of the magnetically separable catalyst to yield the corresponding α‐aminonitriles in good to excellent yields. The prepared nanocomposite was characterized using scanning electron microscopy and energy‐dispersive X‐ray and Fourier transform infrared spectroscopies. The nanocomposite was also found to be reusable could be recovered easily and reused several times without distinct deterioration in its catalytic activity.  相似文献   

17.
A reusable heterogeneous catalytic assembly of [PO4{WO(O2)2}4]3? held in an ionic liquid brush was synthesized and an environmentally friendly procedure was developed for the dihydroxylation of several olefins with 30 wt% H2O2. These reactions were conducted in neat water under mild conditions without any organic co‐solvent or other additive. Several factors that affect the dihydroxylation were investigated in detail. The catalyst is easily recovered after the reaction via simple filtration, and can be reused at least eight times without a noticeable loss of activity. The experimental results demonstrate that this dihydroxylation process has no apparent scale‐up effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A core–shell Fe3O4@silica magnetic nanocomposite functionalized with 3-amino-5-mercapto-1,2,4-triazole (Fe3O4/SiO2/PTS/AMTA) was prepared using Fe3O4 with silica layer, and its surface was modified with 3-amino-5-mercapto-1,2,4-triazole. The novel synthesized magnetite nanocomposite was characterized using various techniques. The catalytic activity of Fe3O4/SiO2/PTS/AMTA was demonstrated in the synthesis of bis(indolyl)methane derivatives under solvent-free conditions. Some of the bis(indolyl)methane derivatives were synthesized through one-pot, three-component reaction of 1 mol of various benzaldehydes or ketones with 2 mol of indole in the presence of Fe3O4/SiO2/PTS/AMTA in good to excellent isolated yields. In addition, the catalyst could be recovered and used for several reaction runs without loss of catalytic activity. The stability of recycled catalyst was investigated. This method has some advantages including experimental simplicity, good to excellent yields, solvent-free conditions and stability and reusability of the catalyst.  相似文献   

19.
Four different synthetic strategies led to a variety of furan–yne systems that contained an aryl system in the tether. Due to the short routes to these systems (four steps or less), a small library of substrates could easily be prepared. These were treated with AuCl3 or with the Gagosz’s catalyst Ph3PAuNTf2 complex. The AuCl3‐catalyzed reactions delivered highly substituted fluorene derivatives, a class of compounds of great importance as precursors for luminophores with extraordinary abilities. Conversely, a different mechanistic pathway was observed with the cationic gold(I) catalyst. In the latter case, a mechanistically interesting reaction cascade initiated a formal alkyne insertion into the furyl‐sp3‐C bond, which gave indene derivatives as the final products. This new reaction pathway depends on the aromatic moiety in the tether, which stabilizes a crucial cationic intermediate as a benzylic cation.  相似文献   

20.
陈银飞  王占龙  张泽凯 《催化学报》2009,30(12):1233-1237
 采用固相反应法合成了钙铝石材料 12SrO•7Al2O3, 并以此作为涂层制备了堇青石蜂窝陶瓷型 La0.8Sr0.2MnO3 整体催化剂, 在不同温度 (850~1 050 oC) 下对该催化剂进行了热处理, 并采用 N2 吸附-脱附、X 射线衍射和扫描电镜等手段对其进行了表征, 考察了其催化甲基丙烯酸甲酯燃烧反应的活性. 结果表明, 12SrO•7Al2O3 作为涂层明显改善了整体催化剂的热稳定性, 在 850 oC 下焙烧 6 h 后, 含有 12SrO•7Al2O3 涂层的整体催化剂在 260 oC 即可将甲基丙烯酸甲酯完全转化. 12SrO•7Al2O3 涂层可避免 La0.8Sr0.2MnO3 活性组分与堇青石的接触, 减轻了活性组分在催化剂表面的烧结, 有利于保持 La0.8Sr0.2MnO3 活性组分的晶体结构和分散度, 提高整体催化剂的活性和热稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号