首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two capillary electrophoresis methods for monitoring renally excreted varenicline, a highly effective drug prescribed for smoking cessation, in human urine were developed and compared. A method combining capillary electrophoresis with mass spectrometry was proposed for the fast analysis of varenicline (analysis time up to 7 min). Here, mass spectrometry was a prerequisite for achieving high sensitivity and selectivity of the analysis suitable for the quantification of a 15 ng/mL level of varenicline in un‐pretreated urine matrices. An alternative approach, two‐dimensional (column‐coupled) capillary electrophoresis with enhanced sample load capacity and ultraviolet detection, was proposed as a low‐cost alternative to capillary electrophoresis with mass spectrometry. The isotachophoresis on‐line sample treatment included simple elimination of the major matrix constituents and stacking of the sample in a large volume so that threefold lower quantitation limits could be easily achieved in comparison to the capillary electrophoresis with mass spectrometry. On the other hand, longer analysis time (ca. 4.5‐fold) and more complex electrolyte system in the coupled zone electrophoresis step (including two additives enhancing separation selectivity, i.e. isopropanol and cyclodextrin) were prerequisites for the complete separation of varenicline from the sample matrix. Anyway, both the developed methods were validated according to the Food and Drug Administration guidelines showing favorable performance parameters, suitable for their routine biomedical use.  相似文献   

2.
Glycosylation plays an important role in protein conformations and functions as well as many biological activities. Capillary electrophoresis combined with various detection methods provided remarkable developments for high‐sensitivity glycan profiling. The coating of the capillary is needed for highly polar molecules from complex biosamples. A poly(vinyl alcohol)‐coated capillary is commonly utilized in the capillary electrophoresis separation of saccharides sample due to the high‐hydrophilicity properties. A modified facile coating workflow was carried out to acquire a novel multiple‐layer poly(vinyl alcohol)‐coated capillary for highly sensitive and stable analysis of glycans. The migration time fluctuation was used as index in the optimization of layers and a double layer was finally chosen, considering both the effects and simplicity in fabrication. With migration time relative standard deviation less than 1% and theoretical plates kept stable during 100 consecutive separations, the method was presented to be suitable for the analysis of glycosylation with wide linear dynamic range and good reproducibility. The glycan profiling of enzymatically released N‐glycans from human serum was obtained by the presented capillary electrophoresis method combined with mass spectrometry detection with acceptable results.  相似文献   

3.
The review is focused on the latest developments in the analysis of proteins and peptides by capillary electrophoresis techniques coupled to mass spectrometry. First, the methodology and instrumentation are overviewed. In this section, recent progress in capillary electrophoresis with mass spectrometry interfaces and capillary electrophoresis with matrix‐assisted laser desorption/ionization is mentioned, as well as separation tasks. The second part is devoted to applications—mainly bottom‐up and top‐down proteomics. It is obvious that capillary electrophoresis with mass spectrometry methods are well suited for peptide and protein analysis (proteomic research) and it is described how these techniques are complementary and not competitive with the often used liquid chromatography with mass spectrometry methods.  相似文献   

4.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

5.
Capillary electrophoresis coupled online with mass detection is a modern tool for analyzing wide ranges of compounds in complex samples, including urine. Capillary electrophoresis with mass spectrometry allows the separation and identification of various analytes spanning from small ions to high molecular weight protein complexes. Similarly to the much more common liquid chromatography-mass spectrometry techniques, the capillary electrophoresis separation reduces the complexity of the mixture of analytes entering the mass spectrometer resulting in reduced ion suppression and a more straightforward interpretation of the mass spectrometry data. This review summarizes capillary electrophoresis with mass spectrometry studies published between the years 2017 and 2021, aiming at the determination of various compounds excreted in urine. The properties of the urine, including its diagnostical and analytical features and chemical composition, are also discussed including general protocols for the urine sample preparation. The mechanism of the electrophoretic separation and the instrumentation for capillary electrophoresis with mass spectrometry coupling is also included. This review shows the potential of the capillary electrophoresis with mass spectrometry technique for the analyses of different kinds of analytes in a complex biological matrix. The discussed applications are divided into two main groups (capillary electrophoresis with mass spectrometry for the determination of drugs and drugs of abuse in urine and capillary electrophoresis with mass spectrometry for the studies of urinary metabolome).  相似文献   

6.
Ascorbic acid is a powerful antioxidant compound involved in many biological functions, and a chronic deficiency is at the origin of scurvy disease. A simple, rapid, and cost‐effective capillary electrophoresis method was developed for the separation and simultaneous quantification of ascorbic acid and the major degradation products: dehydroascorbic acid, furfural, and furoic acid. Systematic optimization of the conditions was performed that enabled baseline separation of the compounds in less than 10 min. In addition to simultaneous quantification of ascorbic acid alongside to the degradation products, stability studies demonstrated the possibility using capillary electrophoresis to separate and identify the major degradation products. Thus, high‐resolution tandem mass spectrometry experiments were conducted in order to identify an unknown degradation product separated by capillary electrophoresis and significantly present in degraded samples. Comparison of mass spectrometry data and capillary electrophoresis electropherograms allowed to identify unambiguously trihydroxy‐keto‐valeraldehyde. Finally, capillary electrophoresis was successfully applied to evaluate the composition of different pharmaceutical preparation of ascorbic acid. Results showed the excellent performance of the capillary electrophoresis method due to the separation of excipients from the compounds of interest, which demonstrated the relevance of using an electrophoretic separation in order to perform comprehensive stability studies of ascorbic acid.  相似文献   

7.
Progress made in the last five years in the application of capillary electrophoresis methods to chemical speciation of elements is reported on the basis of over 100 literature references. The main trends observed include development of new on‐ and off‐capillary derivatization methods, application of new detection methods, and especially coupling of CE separation systems to powerful atomic spectroscopy and mass spectrometry instruments with various ionization techniques, providing either a sensitive element‐specific detection method or a third dimension for high performance separation. Besides numerous CZE and MEKC capillary electrophoresis methods only very few examples of CE speciation with capillary electrochromatography can be found. Concerning the chemical forms of elements determined, the new procedures developed are mostly focused on redox speciation of various oxidation states of elements, metal‐bound high molecular compounds, and organometallic species.  相似文献   

8.
Chang SY  Tseng WL  Mallipattu S  Chang HT 《Talanta》2005,66(2):411-421
The review focuses on the analysis of small phosphorus-containing compounds by capillary electrophoresis (CE) with different detection modes including UV absorption, laser-induced fluorescence, conductometry, amperometry, atomic spectrometry, and mass spectrometry. Determinations of phosphates, organophosphate, and chemical warfare agents in environmental samples such as water, soil and grains are emphasized. To achieve better sensitivity, high-resolving power, and reproducibility, the optimum separation conditions for various analytes (samples) are different. We compare the merits and demerits of the different detection modes for the detection of the analytes. Although the present methods are successful in many cases, there is still a need to develop high-throughput CE techniques for screening numerous environmental samples and sample stacking techniques in CE for the analysis of trace analytes.  相似文献   

9.
由于毛细管进样体积小以及在柱检测光程短,极大地限制了毛细管电泳检测灵敏度的提高.为了提高毛细管电泳的检测灵敏度,多种样品富集的方法得以发展.本文对近年来毛细管电泳的样品预富集方法与应用作一简明的综述。  相似文献   

10.
A novel capillary zone electrophoresis separation coupled to electro spray ionization time‐of‐flight mass spectrometry method was developed for the simultaneous analysis of six toxic alkaloids: brucine, strychnine, atropine sulfate, anisodamine hydrobromide, scopolamine hydrobromide and anisodine hydrobromide in human plasma and urine. To obtain optimal sensitivity, a solid‐phase extraction method using Oasis MCX cartridges (1 mL, 30 mg; Waters, USA) for the pretreatment of samples was used. All compounds were separated by capillary zone electrophoresis at 25 kV within 12 min in an uncoated fused‐silica capillary of 75 μm id × 100 cm and were detected by time‐of‐flight mass spectrometry. This method was validated with regard to precision, accuracy, sensitivity, linear range, limit of detection (LOD), and limit of quantification (LOQ). In the plasma and urine samples, the linear calibration curves were obtained over the range of 0.50–100 ng/mL. The LOD and LOQ were 0.2–0.5 ng/mL and 0.5–1.0 ng/mL, respectively. The intra‐ and interday precision was better than 12% and 13%, respectively. Electrophoretic peaks could be identified by mass analysis.  相似文献   

11.
We report a simple and highly sensitive method for the simultaneous detection of trace zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate by capillary electrophoresis with inductively coupled plasma mass spectrometry. Zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate were chelated with trans‐1,2‐diaminocyclohexane‐N,N,N′,N′‐tetraacetic acid to form a macromolecule complex. Then, these two compounds were separated by α‐cyclodextrin‐modified capillary electrophoresis within 12 min at a separation voltage of 15 kV and measured by inductively coupled plasma mass spectrometry. The developed method is sensitive with detection limit of 1.9 and 3.0 ng Zn/mL for zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate, respectively. By means of ultrasound‐assisted extraction methods, zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate spiked into cabbage leaves were successfully extracted and determined with a relative standard deviation (= 5) ≤ 6% and a recovery of 95–107%.  相似文献   

12.
This review updates and follows‐up a previous review by highlighting recent advancements regarding capillary electromigration methodologies and applications in pharmaceutical analysis. General approaches such as quality by design as well as sample injection methods and detection sensitivity are discussed. The separation and analysis of drug‐related substances, chiral CE, and chiral CE‐MS in addition to the determination of physicochemical constants are addressed. The advantages of applying affinity capillary electrophoresis in studying receptor–ligand interactions are highlighted. Finally, current aspects related to the analysis of biopharmaceuticals are reviewed. The present review covers the literature between January 2013 and December 2015.  相似文献   

13.
免疫亲和毛细管电泳的研究进展   总被引:2,自引:0,他引:2  
陈泓序  张新祥 《色谱》2009,27(5):631-641
免疫亲和毛细管电泳方法结合了免疫分析的高特异性和毛细管电泳分离的高效、快速、样品用量少等优点,是复杂样品中特定组分分析的重要方法之一。激光诱导荧光检测器的使用以及毛细管电泳分离前免疫预富集过程的引入,可以进一步提高分析测定的灵敏度,使其能够用于痕量物质的高灵敏测定。本文结合作者所在课题组的工作,对免疫亲和毛细管电泳的两种主要模式,即均相的毛细管电泳免疫分析(CEIA)和非均相的免疫亲和毛细管电泳(IACE)的研究进展进行了综述。  相似文献   

14.
微量金属元素的毛细管电泳分析方法及应用   总被引:9,自引:1,他引:8  
屈锋  王敏  林金明 《分析化学》2005,33(4):562-568
综述了毛细管电泳分析微量金属元素的基本原理、分离模式(CZE、MKEC、非水电泳、芯片分离等)、检测方法(紫外、荧光、化学发光、安培、电导、质谱联用技术)等的进展和该技术在环境、生物医学领域的研究与应用。引用文献94篇。  相似文献   

15.
Narrow peaks are important to high‐resolution and high‐speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra‐small detection cell length of 0.36 μm was easily achieved by using an image sensor.  相似文献   

16.
Focusing on the demand from the food industry for fast and reliable alternative methods to control the quality of food products, we present in this paper a method for amino acid separation and glutamic acid quantification in complex matrices employing capillary electrophoresis with capacitively coupled contactless conductivity detection. We demonstrate by simulation and experimentally the use of organic solvents in sample preparation to prevent peak splitting and increase stacking in capillary electrophoretic separations of amino acids. Additionally, we obtained results for glutamic acid quantification comparable to those obtained via traditional methods used at industrial sites. We tested premium and low‐cost samples with large variations in their glutamic acid content, which demonstrated the wide range of applicability of the method presented herein. The results of the proposed capacitively coupled contactless conductivity detection based capillary electrophoresis method agreed with those obtained by an enzymatic detector and ultra high performance liquid chromatography coupled to tandem mass spectrometry, considering a confidence level of 95%.  相似文献   

17.
Metal-biomolecule interactions comprise an important research area in metallomics, and are significant for biology, medicine, pharmacy, nutrition, metabolism, and environmental science. Hybrid techniques are preferred for studying interactions between metals and biomolecules. Of all the separation techniques, capillary electrophoresis (CE) exhibits high resolution, minimal sample and reagent consumption, and rapid and efficient separations with minor disturbance of the existing equilibrium between the metal species and their biomolecular complexes. Inductively coupled plasma mass spectrometry (ICP-MS) presents high sensitivity to most of elements and offers multi-element detection.This article provides an overview of CE-ICP-MS for the study of metal-biomolecule interactions. We discuss applications of CE-ICP-MS to the study of interactions between metals or metalloids and natural ligands, such as humic substances or fulvic acids, and the interchange of metal complexes with metal species in metalloproteins.  相似文献   

18.
Chemical speciation (extraction of elemental information and identification of molecular environment for an analyte in a complex sample) has been a long sought after goal for analytical chemists. Recently, because of successful developments in more sensitive element-specific detectors and gentle separation schemes, which preserve the true chemical information in a real sample, routine speciation experiments are becoming a common occurrence in the scientific literature. For many reasons, the combination of capillary electrophoresis (for separation of different chemical species) with inductively coupled plasma mass spectrometry (for element and isotope specific detection) has emerged as the method of choice for these analyses. In this article the basic principles of capillary electrophoresis inductively coupled plasma mass spectrometry are discussed. Design consideration for instrument interface, anticipated difficulties with speciation experiments and applications for specific matrices and analytes are also presented in this article.  相似文献   

19.
The present review summarizes scientific reports from between 2010 and 2019 on the use of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and herbal formulations. The present literature review is founded on PRISMA guidelines and selection criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Study type). The scrutiny reveals capillary electrophoresis with ultraviolet detection as the most frequently used capillary electromigration technique for the selective separation and quantification of bioactive compounds. For the purpose of improvement of resolution and sensitivity, other detection methods are used (including mass spectrometry), modifiers to the background electrolyte are introduced and different extraction as well as pre-concentration techniques are employed. In conclusion, capillary electrophoresis is a powerful tool and for given applications it is comparable to high performance liquid chromatography. Short time of execution, high efficiency, versatility in separation modes and low consumption of solvents and sample make capillary electrophoresis an attractive and eco-friendly alternative to more expensive methods for the quality control of drugs or raw plant material without any relevant decrease in sensitivity.  相似文献   

20.
Laser‐induced fluorometry (LIF) has achieved the detection of single molecules, which ranks it among the most sensitive of detection techniques, whereas capillary electrophoresis (CE) is known as a powerful separation method with resolution that is beyond the reach of many other types of chromatography. Therefore, a coupling of LIF with CE has established an unrivaled analytical technique in terms of sensitivity and resolution. CE‐LIF has demonstrated excellent performance in bioanalytical chemistry for the high‐resolution separation and highly sensitive detection of DNAs, proteins, and small bioactive molecules. This review describes the CE‐LIF methods developed by the author's group that include indirect and direct detection using diode lasers, post‐column derivatization, and Hadamard transformation, as well as applications to the binding assays of specific DNA immunoassays of proteins and to the determination of anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号