首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel concept of an iridium‐based bubble‐propelled Janus‐particle‐type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m2 g?1. The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium‐doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble‐propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.  相似文献   

2.
A superhydrophobic cotton textile with high antibacterial properties has been fabricated. The cotton textile was coated through the in situ growth of ZnO‐SiO2 nanoparticles in presence of chitosan as the template agent via a hydrothermal process at 95 °C. This process was followed by the coating of additional layers of hexadecyltrimethoxysilane (HDTMS). The obtained cotton textile showed antibacterial property against Staphylococcus epidermis and Escherichia coli with inhibition zones up to 18.26 and 8.48 mm, respectively. Scanning electron microscopy (SEM) revealed that the coating had a rough surface, which was attributed to the distribution of ZnO‐SiO2 nanorods of hexagonal shape. This rough surface creates a superhydrophobic layer that repels the bacteria, as proven by the large water contact angle of approximately 150°. Nevertheless, the HDTMS layers prolong the durability of hydrophobicity for up to 3 h.  相似文献   

3.
Extraction of nucleic acids in microsystems is of significance for biomedical applications, but the current extraction methods generally require sophisticated microchannels and external equipment, hindering their practical applications. In this work, we have demonstrated a simple, versatile and efficient approach to extract nucleic acids in microsystems by developing cationic branched polyethyleneimine (PEI)‐functionalized tubular micromotors. The as‐developed tubular micromotors are fabricated by a two‐step process combining the template‐assisted electrodeposition and carbodiimide chemistry, and contain an inner catalytic Pt layer, a middle magnetic Ni layer and an outer cationic PEI layer. They exhibit autonomous bubble‐propelled motion in aqueous hydrogen peroxide solutions, which can be guided by an external magnetic field, and the surface charges can be reversibly modulated by changing the pH value of the solution. Consequently, the as‐developed tubular micromotors can selectively absorb nucleic acids from acidic solutions and desorb them into alkaline solutions, leading to the extraction of nucleic acids with high efficiency without external stirring. Furthermore, they can be operated in a microchannel chip without the aid of a pumping system. Our results indicate that this PEI‐functionalized tubular micromotor platform provides a novel, simple and versatile microsystem nucleic acid extraction technology, holding considerable promise for important practical applications.  相似文献   

4.
《先进技术聚合物》2018,29(8):2317-2326
We develop a new strategy for the continuous separation of oil from water surface using a novel tubular unit based on graphene coated polyurethane (P‐GEPU) sponge, and the P‐GEPU sponge was fabricated by a simple dip‐coating method; the as‐prepared sponges could adsorb different kinds of oil and organic liquids while repelling water. Moreover, the tubular unit was assembled by wrapping the P‐GEPU sponge on a porous PU hollow tube and combined with the accessories including pipes and joints. The tubular unit could float on the surface of water, and a continuous oil collection from water surface through vacuum pressure could be fulfilled, showing a high oil‐water separation efficiency (>96%). Finally, oil‐water separation efficiency remains above 93% after 10 cycles, exhibiting excellent reusability. In addition, our findings are easily scaled up, showing a great promise for large‐scale oil spill remediation.  相似文献   

5.
Graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin multilayer films composed of graphene sheet (GS) and mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were fabricated easily by two steps. First, negatively charged graphene oxide (GO) and positively charged mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were layer‐by‐layer (LBL) self‐assembled on glassy carbon electrode (GCE) modified with a layer of poly(diallyldimethylammonium chloride) (PDDA). Then graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GS/NH2β‐CD) multilayer films were built up by electrochemical reduction of graphene oxide/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GO/NH2β‐CD). Combining the high surface area of GS and the active recognition sites on β‐cyclodextrin (β‐CD), the GS/NH2β‐CD multilayer films show excellent electrochemical sensing performance for the detection of DA with an extraordinary broad linear range from 2.53 to 980.05 µmol·L?1. This study offers a simple route to the controllable formation of graphene‐based electrochemical sensor for the detection of DA.  相似文献   

6.
Catalytic tubular micro/nanomachines convert chemical energy from a surrounding aqueous fuel solution into mechanical energy to generate autonomous movements, propelled by the oxygen bubbles decomposed by hydrogen peroxide and expelled from the microtubular cavity. With the development of nanotechnology, micro/nanomotors have attracted more and more interest due to their numerous potential for in vivo and in vitro applications. Here, highly efficient chemical catalytic microtubular motors were fabricated via 3D laser lithography and their motion behavior under the action of driving force in fluids was demonstrated. The frequency of catalytically‐generated bubbles ejection was influenced by the geometrical shape of the micro/nanomotor and surrounding chemical fuel environment, resulting in the variation in motion speed. The micro/nanomotors generated with a rocket‐like shape displayed a more active motion compared with that of a single tubular micro/nanomotor, providing a wider range of practical micro‐/nanoscale applications in the future.  相似文献   

7.
We report a mechanically strong, electrically and thermally conductive, and optically transparent shape‐memory polyurethane composite which was fabricated by introducing a small amount (0.1 wt%) of high‐quality graphene as a filler. Geometrically large (≈4.6 μm2), but highly crystallized few‐layer graphenes, verified by Raman spectroscopy and transmission electron microscopy, were prepared by the sonication of expandable graphite in an organic solvent. Oxygen‐ containing functional groups at the edge plane of graphene were crucial for an effective stress transfer from the graphene to polyurethane. Homogeneously dispersed few‐layered graphene enabled polyurethane to have a high shape recovery force of 1.8 MPa cm−3. Graphene, which is intrinsically stretchable up to 10%, will enable high‐performance composites to be fabricated at relatively low cost and we thus envisage that such composites may replace carbon nanotubes for various applications in the near future.  相似文献   

8.
We investigate the spontaneous rolling of polydimethylsiloxane (PDMS) thin films and demonstrate the fabrication of capillaries with topographical and chemical patterns on the inner wall. Thin films of PDMS are either coated by a layer of hard material or have their surface hardened by plasma oxidation. They are then driven out of equilibrium by selective solvent swelling in vapor phase resulting in a tubular rolled‐up system. The inner diameter of those is measured as a function of layer thickness for different solvents and capping types. Those results are shown to be in good agreement with Timoshenko theory. Before rolling, the future inner surface can be characterized and functionalized. We demonstrate topographical and chemical patterning, respectively by embossing and microcontact printing. These methods are very simple and can easily produce cylindrical capillaries with inner diameter between 20 and some hundreds of microns with fully functionalized inner surface, overcoming many difficulties encountered in conventional soft lithography techniques. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 721–728  相似文献   

9.
Hybrid micromotors capable of both chemically powered propulsion and fuel‐free light‐driven actuation and offering built‐in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built‐in optical braking system allows “on‐the‐fly” control of the chemical propulsion through a photocatalytic reaction on the TiO2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on‐demand operations.  相似文献   

10.
The technological exploitation of the extraordinary properties of graphene relies on the ability to achieve full control over the production of a high‐quality material and its processing by up‐scalable approaches in order to fabricate large‐area films with single‐layer or a few atomic‐layer thickness, which might be integrated in working devices. A simple method is reported for producing homogenous dispersions of unfunctionalized and non‐oxidized graphene nanosheets in N‐methyl‐2‐pyrrolidone (NMP) by using simple molecular modules, which act as dispersion‐stabilizing compounds during the liquid‐phase exfoliation (LPE) process, leading to an increase in the concentration of graphene in dispersions. The LPE‐processed graphene dispersion was shown to be a conductive ink. This approach opens up new avenues for the technological applications of this graphene ink as low‐cost electrodes and conducting nanocomposite for electronics.  相似文献   

11.
A micromotor‐based strategy for energy generation, utilizing the conversion of liquid‐phase hydrogen to usable hydrogen gas (H2), is described. The new motion‐based H2‐generation concept relies on the movement of Pt‐black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt‐black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen–oxygen fuel cell car by an on‐board motion‐based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on‐site energy generation for powering external devices or meeting growing demands on the energy grid.  相似文献   

12.
In this report, a graphene/poly(ethylene‐co‐vinyl acetate) composite electrode was fabricated by melt compounding for the amperometric detection of capillary electrophoresis. The composite electrode was fabricated by packing a mixture of graphene and melted poly(ethylene‐co‐vinyl acetate) in a piece of fused silica capillary under heat. The structure of the composite was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that graphene sheets were well dispersed in the composite to form an interconnected conducting network. The performance of this unique graphene‐based detector has been demonstrated by separating and detecting rutin, quercitrin, kaempferol, and quercetin in Cacumen platycladi in combination with capillary electrophoresis. The four flavones have been well separated within 9 min in a 50‐cm‐long capillary at a separation voltage of 12 kV using a 50 mM sodium borate buffer (pH 9.2). The graphene‐based detector offered significantly lower operating potentials, substantially enhanced signal‐to‐noise characteristics, lower expense of operation, high resistance to surface fouling, and enhanced stability. It showed long‐term stability and repeatability with relative standard deviations of <5% for the peak current (n = 15).  相似文献   

13.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

14.
A ZnO@reduced graphene oxide–poly(N‐vinylpyrrolidone) (ZnO@RGO‐PVP) nanocomposite, prepared by in situ growth of ZnO nanoparticles on PVP‐decorated RGO (RGO‐PVP) was developed as a cathode buffer layer for improving the performance of polymer solar cells (PSCs). PVP not only favors homogeneous distribution of the RGO through the strong π–π interactions between graphene and PVP molecules, but also acts as a stabilizer and bridge to control the in situ growth of sol–gel‐derived ZnO nanoparticles on the surface of the graphene. At the same time, RGO provides a conductive connection for independent dispersion of ZnO nanoparticles to form uniform nanoclusters with fewer domain boundaries and surface traps. Moreover, the LUMO level of ZnO is effectively improved by modification with RGO‐PVP. Compared to bare ZnO, a ZnO@RGO‐PVP cathode buffer layer substantially reduces the recombination of carriers, increases the electrical conductivity, and enhances electron extraction. Consequently, the power conversion efficiency of an inverted device based on thieno[3,4‐b]thiophene/benzodithiophene (PTB7):[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) with ZnO@RGO‐PVP as cathode buffer layer was greatly improved to 7.5 % with improved long‐term stability. The results reveal that ZnO@RGO‐PVP is universally applicable as a cathode buffer layer for improving the performance of PSCs.  相似文献   

15.
A 3 m zwitterionic polymeric porous layer open tubular column (3 m × 25 μm id × 375 μm od) with a polymeric porous layer thickness of 4 μm was fabricated by the copolymerization of [2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide and N,N’‐methylenebis(acrylamide). The effects of the diameter of the capillary, reaction temperature, and polymerization time on the preparation of the open tubular column were investigated. Characterized by scanning electron microscopy, the zwitterionic layer was observed to be rough and throughout the fused‐silica capillary homogenously, which increased the phase ratio. The separation of neutral, basic, and acidic compounds demonstrates the strong hydrophilicity of the poly[2‐(methacryloyloxy)ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide coating. In addition, the poly[2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide porous layer open tubular column was applied for the analysis of flavonoids from the rootstalk of licorice, revealing the potential in separating complex samples. The relative standard deviation of retention time for run‐to‐run (n = 5), day‐to‐day (n = 3), and column‐to‐column (n = 3) of toluene, N,N‐dimethylformamide, formamide, and thiourea were below 1.2%, exhibiting good repeatability.  相似文献   

16.
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨,在此基础上采用低温热解膨胀结合微波加热乙二醇还原法合成石墨烯(Gr)以及铂/石墨烯(Pt/Gr)复合材料。SEM和TEM显示所制备的石墨烯为层状结构的半透明薄膜。采用X射线光电子能谱(XPS)和傅立叶转换红外光谱(FTIR)分别确定氧化石墨、膨胀石墨及石墨烯表面含氧官能团的数量和性质。以所制备的碳氧原子比5.94的石墨烯作为载体制备出可用于质子交换膜燃料电池的高负载量的Pt/Gr催化剂,在铂载量高达60%时,表面铂粒子依然具有高分散性,平均粒径为3.8 nm。  相似文献   

17.
We report a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) brush functionalized Janus Au–Pt bimetallic micromotor capable of modulating the direction of motion with the change of the ambient temperature. The PNIPAM@Au–Pt micromotor moved along the Au–Pt direction with a speed of 8.5 μm s?1 in 1.5 % H2O2 at 25 °C (below the lower critical solution temperature (LCST) of PNIPAM), whereas it changed the direction of motion (i.e., along the Pt–Au direction) and the speed decreased to 2.3 μm s?1 at 35 °C (above LCST). Below LCST, PNIPAM brushes grafted on the Au side were hydrophilic and swelled, which permitted the electron transfer and proton diffusion on the Au side, and thus the motion is regarded as a self‐electrophoretic mechanism. However, PNIPAM brushes above LCST became hydrophobic and collapsed, and thus the driving mechanism switched to the self‐diffusiophoresis like that of Pt‐modified Janus silica motors. These motors could reversibly change the direction of motion with the transition of the hydrophobic and hydrophilic states of the grafted PNIPAM brushes. Such a thermoresponsive polymer brush functionalization method provides a new strategy for engineering the kinematic behavior of phoretically driven micro/nanomotors.  相似文献   

18.
New Pd(Pt) catalysts have been fabricated by assembling multicomponents of Fe3O4 and CeO2/Pd(Pt) on the surface of reduced graphene oxide (RGO) nanosheets in layers. The as‐obtained Pd(Pt) catalysts exhibit extremely high catalytic activity in the selective hydrogenation reaction of nitrobenzene. Owing to the presence of Fe3O4, the catalysts can be easily recycled from the catalytic system through magnetic separation. Their high activity, stability, and magnetic recyclability make the as‐obtained hybrids very promising as catalysts in catalytic applications. Compared to other traditional multishell magnetic catalysts that were prepared by means of layer‐by‐layer technology, our process is much more facile and more easily controlled.  相似文献   

19.
A novel graphene/polystyrene composite electrode was developed for the enhanced amperometric detection of CE in this work. The composite electrode was fabricated on the basis of the in situ polymerization of a mixture of graphene and prepolymerized styrene in the bore of a piece of fused‐silica capillary under heat. SEM, XRD, and FTIR offered insights into the nature of the composite. The results indicated that graphenes were well dispersed and embedded throughout the PS matrix to form an interconnected conducting network. The performance of this unique graphene‐based detector has been demonstrated by separating and detecting rutin, isoquercitrin, quercitrin, and chlorogenic acid in Herba Houttuyniae (a traditional Chinese medicine) in combination with CE. The prepared graphene‐based CE detector offered significantly lower detection potential, yielded enhanced signal‐to‐noise characteristics, and exhibited high resistance to surface fouling and enhanced stability. It showed long‐term stability and reproducibility with a relative standard deviation of 3.1% for the peak current (n=15).  相似文献   

20.
For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D‐printing‐manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram‐positive or gram‐negative bacterial species. Zinc atoms as outermost layer (ZnO?Zn) showed a more pronounced antibacterial effect towards gram‐negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO?O) showed a stronger antibacterial activity against gram‐positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn2+ concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号