首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Microreader 28A ID System is a new 28-plex genotyping system with 6-dye multiplex amplification, which allows the simultaneous amplification of all 20 Combined DNA Index System (CODIS) core loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, TPOX, vWA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, D22S1045), plus five extended STRs loci (D6S1043, Penta D, Penta E, DYS391, SE33), 2 Y-Indels (Rs2032678, Rs771783753), and the amelogenin loci. This system can be used for forensic analyses, such as personal identification, kinship testing, scientific research, database applications, and other aspects of human genetic identification. The validation of the Microreader 28A ID System followed the “Validation Guidelines for DNA Analysis Methods (2016)” described by the Scientific Working Group on DNA Analysis Methods and the regulations published by the China Ministry of Public Security. Our tests included PCR-based studies, sensitivity study, precision and accuracy evaluation, stutter percentage and heterozygous peak height ratio, inhibitor tests, species specificity, and population studies. The validation results suggest that the Microreader 28A ID system is a robust and reliable amplification kit for personal identification, kinship testing, and forensic database applications.  相似文献   

2.
The aim of this study was to investigate a 19 STR loci database using the Bai population from China. This multiplex amplification kit included 13 CODIS STR markers and six plus STR markers (D19S433, Penta E, D2S1338, Penta D, D6S1043, and D12S391) that were successfully analyzed by using 1158 DNA samples from the Bai population from the southwestern part of mainland China. These results indicate that this multiplex amplification kit may provide significant polymorphic information for kinship testing and relationship investigations.  相似文献   

3.
The aim of this study was to investigate a 13 non‐CODIS STR loci database using three national populations from China. A new multiplex PCR system that simultaneously amplified 13 loci in the same PCR reaction was developed. This multiplex system included the 13 STR markers (D3S2402, D3S2452, D3S1766, D3S4554, D3S2388, D3S3051, D3S3053, D4S2364, D4S2404, AC001348A, AC001348B, D17S975, and D17S1294), which were successfully analyzed by using 441 DNA samples from three national populations in China (154 Mongol, 177 Kazakh, and 110 Uigur). Allele frequencies and mutation rates of the 13 non‐CODIS STR loci were investigated. A total of 4–10 alleles at each locus were observed and altogether 84, 88, and 87 alleles for the all selected loci were found in the Mongol, Kazakh, and Uigur, respectively. Eight mutations were detected from the 13 selected loci in 9880 meioses in kinship cases. These results indicate that this multiplex system may provide significant polymorphic information for kinship testing and relationship investigations.  相似文献   

4.
This paper describes the development and validation of a novel 31-locus, six-dye STR multiplex system, which is designed to meet the needs of the rapidly growing Chinese forensic database. This new assay combines 20 extended-CODIS core loci (D3S1358, D5S818, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D8S1179, D18S51, D16S539, D13S317, FGA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and D22S1045), nine highly polymorphic loci in Chinese Han population (D3S3045, D6S1043, D6S477, D8S1132, D10S1435, D15S659, D19S253, Penta D, and Penta E), and two gender determining markers, amelogenin and Y-Indel, which could amplify DNA from extracts, as well as direct amplification from substrates. To demonstrate the suitability for forensic applications, this system was validated by precision and accuracy evaluation, concordance tests, case sample tests, sensitivity, species specificity, stability, stutter calculation, and DNA mixtures, according to the guidelines described by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and regulations published by the China Ministry of Public Security. The validation results indicate the robustness and reliability of this new system, and it could be a potentially helpful tool for human identification and paternity testing in the Chinese population, as well as facilitating global forensic DNA data sharing.  相似文献   

5.
We used an infrared (IR) automated fluorescence monolaser sequencer for the analysis of 13 autosomal short tandem repeat (STR) systems (TPOX, D3S1358, FGA, CSF1PO, D5S818, D7S820, D8S1179, TH01, vWA, D13S317, D16S359, D18S51, D21S11) and the X-Y homologous gene amelogenin system. These two systems represent the core of the combined DNA index systems (CODIS). Four independent multiplex reactions, based on the polymerase chain reaction (PCR) technique and on the direct labeling of the forward primer of every primer pair, with a new molecule (IRDye800), were set up, permitting the exact characterization of the alleles by comparison with ladders of specific sequenced alleles. This is the first report of the whole analysis of the STRs of the CODIS core using an IR automated DNA sequencer. The protocol was used to solve paternity/maternity tests and for population studies. The electrophoretic system also proved useful for the correct typing of those loci differing in size by only 2 bp. A sensibility study demonstrated that the test can detect an average of 10 pg of undegraded human DNA. We also performed a preliminary study analyzing some forensic samples and mixed stains, which suggested the usefulness of using this analytical system for human identification as well as for forensic purposes.  相似文献   

6.
The aim of this study was to investigate the genetic polymorphism of 20 short tandem repeat (STR) loci including D1S1656, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, CSF1PO, FGA, Penta D, Penta E, TH01, TPOX, and vWA in Han population of Henan, China and to assess its value in forensic science. Genomic DNA was extracted from 274 blood samples of unrelated healthy individuals in the Henan Han population. Alleles were amplified with PowerPlex® 21 system kit and PCR products were detected with ABI3130 genetic analyzer (Applied Biosystems) and the data were analyzed with modified PowerStats v1.2. A total of 229 alleles were observed in this Han population and the allelic frequencies ranged from 0.0020 to 0.5090 in the present study. Observed genotype distributions for each locus do not show deviations from Hardy–Weinberg equilibrium expectations (p < 0.05). The combined power of discrimination, combined power of exclusion, and combined matching probability of this 20 STR loci were 0.999999999, 0.999999994603, and 4.0433 × 10?24, respectively. The 20 STR loci are highly polymorphic in the Han population of Henan, China and they may be of great value in forensic science and human population genetics.  相似文献   

7.
Human identification and paternity testing are usually based on the study of STRs depending on their particular characteristics in the forensic investigation. In this paper, we developed a sensitive genotyping system, SiFaSTR? 23‐plex, which is able to characterize 18 expanded Combined DNA Index System STRs (D3S1358, D5S818, D2S1338, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D10S1248, D8S1179, D1S1656, D18S51, D12S391, D19S433, D16S539, D13S317, and FGA), three highly polymorphic STRs among Chinese people (Penta D, Penta E, and D6S1043), one Y‐chromosome Indel and amelogenin using a multiplex PCR; the PCR amplified products were analyzed using the Applied Biosystems 3500 Genetic Analyzer. Full genotyping profiles were obtained using only 31.25 pg of control DNA; various case‐type specimens, as well as ten‐year‐old samples were also successfully genotyped. Additionally, in the validation studies, this multiplex was demonstrated to be human‐specific and compatible with the interference of multiple PCR inhibitors. The system also enabled the detection of mixtures, and complete profiles could be obtained at the mixed ratios of 1:1, 1:3, and 3:1. The development and validation study here illustrated that the SiFaSTR? 23‐plex system is accurate, powerful, and more sensitive than many other systems. What's more, the population data in our study not only illustrated that this 23‐plex typing system was straightforward and efficient but also expanded the Chinese STR database, which could facilitate the appropriate application of the 23 genetic markers in forensic genetics, especially in the Chinese population.  相似文献   

8.
A new multiplex system for six tetranucleotide short tandem repeat (STR) loci was devised based on multicolor dye technology. Six loci (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), each with high discriminating power (each unbiased estimates of expected heterozygosity, Exp. Hz, > 0.80 in a preliminary test), were selected from more than 100 tetranucleotide STRs included in a commercially available primer set. These loci were also selected so as not to link with general STRs in commercially released kits including the combined DNA index system (CODIS) 13 core STRs. The primers were newly designed in the present study, in which each amplicon size had a range of less than 200 base pairs (bp), in order to genotype from highly degraded template DNA. Using this system, we genotyped 270 Honshu (mainland)-Japanese and 187 Okinawa-Japanese. From these allele frequencies, we performed three tests, a homozygosity test, a likelihood ratio test and an exact test for Hardy-Weinberg equilibrium (HWE), and no significant deviations (p < 0.05) from HWE were observed. We also compared the allele distributions at six STRs between both populations, and they were significantly different (p < 0.05) at three loci (D6S2439, D9S1118 and D4S2639). Furthermore, the Exp. Hz and the power of discrimination (PD) at all loci in the Honshu-Japanese population were higher than 0.80 and 0.93, respectively. These statistical values for discriminating power in the Honshu-Japanese were almost the same as in the Okinawa-Japanese. This novel, multiplex polymerase chain reaction (PCR) amplification and typing system for six STR loci thus promises to be a convenient and informative new DNA profiling system in the forensic field.  相似文献   

9.
We have developed a novel STR 25‐plex florescence multiplex‐STR kit (DNATyper25) to genotype 23 autosomal and two sex‐linked loci for forensic applications and paternity analysis. Of the 23 autosomal loci, 20 are non‐CODIS. The sex‐linked markers include a Y‐STR locus (DYS391) and the Amelogenin gene. We present developmental validation studies to show that the DNATyper25 kit is reproducible, accurate, sensitive, and robust. Sensitivity testing showed that full profiles were achieved with as low as 125 pg of human DNA. Specificity testing demonstrated a lack of cross reactivity with a variety of commonly encountered non‐human DNA contaminants. Stability testing showed that full profiles were obtained with humic acid concentration ≤60 ng/μL and hematin concentration <400 μM. For forensic evaluation, the 23 autosomal STRs followed the Hardy–Weinberg equilibrium. In an analysis of 509 Chinese (CN) Hans, we detected a combined total of 181 alleles at the 23 autosomal STR loci. Since these autosomal STRs are independent from one another, PM was 8.4528 × 10?22, TDP was 0.999 999 999 999 999 999 999, CEP was 0.999 999 8395. The forensic efficiency parameters demonstrated that these autosomal STRs are highly polymorphic and informative in the Han population of China. We performed population comparisons and showed that the Northern CN Han has a close genetic relationship with the Luzhou Han, Tujia, and Bai populations. We propose that the DNATyper25 kit will be useful for cases where paternity analysis is difficult and for situations where DNA samples are limited in quantity and low in quality.  相似文献   

10.
DNA profiling of short tandem repeats (STR) has been successfully used for the identification of individuals in forensic samples, accidents and natural disasters. However, STR profiling of DNA isolated from old crime scenes and damaged biological samples is difficult due to DNA degradation and fragmentation. Here, we show that pre‐amplification of STR loci using biotinylated primers for the STR loci is an efficient strategy to obtain STR profiling results from fragmented forensic samples. Analysis of STR loci with longer amplicon sizes is generally hampered, since these relatively long loci are vulnerable to DNA fragmentation. This problem was overcome by using reduced or increased primer concentrations for loci with shorter or longer amplicon sizes, respectively, in our pre‐amplification strategy. In addition, pre‐amplification of STR loci into two groups of short or long amplicon size increases the efficiency of STR profiling from highly fragmented forensic DNA samples. Therefore, differential pre‐amplification of STR loci is an effective way to obtain DNA profiling results from fragmented forensic samples.  相似文献   

11.
In this study, we describe the developmental validation assay performed on a novel designed STR multiplex system, AGCU 21+1 STR kit. This kit contains a sex‐determining locus amelogenin and 21 noncombined DNA index system STR loci, that are, D6S474, D12ATA63, D22S1045, D10S1248, D1S1677, D11S4463, D1S1627, D3S4529, D2S441, D6S1017, D4S2408, D19S433, D17S1301, D1GATA113, D18S853, D20S482, D14S1434, D9S1122, D2S1776, D10S1435, and D5S2500. The 21+1 kit was validated by a series of tests including optimized PCR conditions, sensitivity, precision and accuracy, stutter ratio, DNA mixture, inhibitors, and species specificity according to the revised validation guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM). Our results in this study show that the kit is a useful tool for forensic application.  相似文献   

12.
A single multiplex PCR assay capable of simultaneously amplifying nine canine‐specific autosomal STR markers (FH3210, FH3241, FH2004, FH2658, FH4012, REN214L11, FH2010, FH2361 and the newly described C38) was developed for individual identification and parentage testing in domestic dogs. In order to increase genotyping efficiency, amplicon sizes were optimized for a 90–350 bp range, with fluorescently labelled primers for use in Applied Biosystems, Inc., platforms. The performance of this new multiplex system was tested in 113 individuals from a case‐study population and 12 random dogs from mixed‐breed origin. Co‐dominant inheritance of STR alleles was investigated in 101 father, mother and son trios. Expected heterozygosity values vary between 0.5648 for REN214L11 and 0.9050 for C38. The high level of genetic diversity observed for most markers provides this multiplex with a very high discriminating power (matching probability=1.63/1010 and matching probability among siblings=4.9/103). Allele sequences and a proposal for standardized nomenclature are also herein presented, aiming at implementing the use of this system in forensic DNA typing and population genetic studies. This approach resulted in an optimized and well‐characterized canine DNA genotyping system that is highly performing and straightforward to integrate and employ routinely. Although this STR multiplex was developed for use and tested in a case‐study population, the Portuguese breed Cão de Gado Transmontano, it proved to be useful for general identification purposes or parentage testing.  相似文献   

13.
This study reports the methodology used to search, select and characterize STR loci on the canine X chromosome using publicly available genome resources and following the current guidelines for human and non‐human forensic testing. After several rounds of selection, 12 X‐STR markers were optimized for simultaneous co‐amplification in a single PCR, and genetic profiles were determined in a sample of 103 unrelated dogs. Mendelian inheritance was verified and mutation rates were assessed using family groups. Alleles that varied in size were sequenced to create a standardized nomenclature proposal based on the number of repeats. All loci conformed to Hardy–Weinberg expectations. The resulting panel showed high forensic efficiency, presenting high values of power of discrimination (in males and females) and mean exclusion chance, both in trios involving female offspring and in duos composed of dam and male offspring. Its use may complement the information obtained by autosomal STR analysis and contribute to the resolution of complex cases of kinship in dogs. The presented methodology for the de novo construction of an STR multiplex may also provide a helpful framework for analogous work in other animal species. As an increasing number of reference genomes become available, convenient tools for individual identification and parentage testing based on STR loci selected from autosomes or sex chromosomes' sequences may be created following this strategy.  相似文献   

14.
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population‐divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12‐STR multiplex composed of ancestry informative marker STRs (AIM‐STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM‐SNPs: Snipper, to handle multiallele STR data using frequency‐based training sets. We assessed the ability of the 12‐plex AIM‐STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM‐SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available.  相似文献   

15.
The goal of the study was to develop a STR multiplex ("Paterniplex") that is--as supplement to commercially available multiplex kits like the Identifiler kit (Applied Biosystems, Foster City, CA)--suitable for solving complex paternity cases such as deficiency cases or cases with mutations. The Paterniplex comprises the nine highly polymorphic STRs D8S1132, D7S1517, D10S2325, D12S391, Se33, D17S976, Penta E, Penta D and FGA in addition to Amelogenin as sex determination marker. The loci were selected because of their high degree of polymorphism (higher than that of the widely used TH01 marker). Only one locus, FGA, is shared with the Identifiler kit to avoid sample mix up. The study further gives details on the population genetics of the loci in a German Caucasian population (allelic distribution, Hardy-Weinberg Equilibrium and forensic efficiency markers such as the Discriminating Power) and three examples for cases that could not be solved using commercially available kits alone, but using the Paterniplex in addition to a commercial kit.  相似文献   

16.
Short tandem repeat loci have been recognized as useful tools in the routine forensic application and in recent decades, more and more new short tandem repeat (STR) loci have been constantly discovered, studied, and applied in forensic caseworks. In this study, we investigated the genetic polymorphisms of 21 STR loci in the Kazak ethnic minority as well as the genetic relationships between the Kazak ethnic minority and other populations. Allelic frequencies of 21 STR loci were obtained from 114 unrelated healthy Kazak individuals in the Ili Kazak Autonomous Prefecture, Xinjiang Uigur Autonomous Region of China. We observed a total of 159 alleles in the group with the allelic diversity values ranging from 0.0044 to 0.5088. The highest polymorphism was found at D19S433 locus and the lowest was found at D1S1627. Statistical analysis of the generated data indicated no deviation from Hardy–Weinberg equilibriums at all 21 STR loci. In order to estimate the population differentiation, allelic frequencies of all STR loci of the Kazak were compared with those of other neighboring populations using analysis of molecular variance method. Statistically significant differences were found between the studied population and other populations at 2–7 STR loci. A neighbor‐joining tree was constructed based on allelic frequencies of the 21 STR loci and phylogenetic analysis indicates that the Kazak has a close genetic relationship with the Uigur ethnic group. The present results may provide useful information for forensic sciences and population genetics studies, and can also increase our understanding of the genetic background of this group. The present findings showed that all the 21 STR loci are highly genetically polymorphic in the Kazak group, which provided valuable population genetic data for the genetic information study, forensic human individual identification, and paternity tests.  相似文献   

17.
Massively parallel sequencing of forensic STRs simultaneously provides length-based genotypes and core repeat sequences as well as flanking sequence variations. Here, we report primer sequences and concentrations of a next-generation sequencing (NGS)-based in-house panel covering 28 autosomal STR loci (CSF1PO, D1GATA113, D1S1627, D1S1656, D1S1677, D2S441, D2S1776, D3S3053, D5S818, D6S474, D6S1017, D6S1043, D8S1179, D9S2157, D10S1435, D11S4463, D13S317, D14S1434, D16S539, D18S51, D18S853, D20S482, D20S1082, D22S1045, FGA, TH01, TPOX, and vWA) and the sex determinant locus Amelogenin. Preliminary evaluation experiments showed that the panel yielded intralocus- and interlocus-balanced sequencing data with a sensitivity as low as 62.5 pg input DNA. A total of 203 individuals from Yunnan Bai population were sequenced with this panel. Comparative forensic genetic analyses showed that sequence-based matching probability of this 29-plex panel reached 2.37 × 10−29, which was 23 times lower than the length-based data. Compound stutter sequences of eight STRs were compared with parental alleles. For seven loci, repeat motif insertions or deletions occurred in the longest uninterrupted repeat sequences (LUS). However, LUS and non-LUS stutters co-existed in the locus D6S474 with different sequencing depth ratios. These results supplemented our current knowledge of forensic STR stutters, and provided a sound basis for DNA mixture deconvolution.  相似文献   

18.
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.  相似文献   

19.
Well‐defined estimates of mutation rates in highly polymorphic tetranucleotide STR loci are a prerequisite for human identification in genetics laboratory routines useful for civil and criminal investigations. Studying 15 autosomal STR loci of forensic interest (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, TH01, TPOX, and vWA), we detected 193 slippage mutations (189 one‐step and four two‐step mutations) in 148 875 parent‐child allelic transfers from 5171 paternity cases with true biological relationship (15 096 individuals; 4754 trios and 417 duos; 9925 meiosis) from the state of São Paulo, a very representative population of Brazil. The overall mutation rate was 1.3 × 10?3 and the highest rates were observed at loci vWA (2.8 × 10?3), FGA and D18S51 (2.7 × 10?3 for both), while loci TH01 and TPOX did not present any mutations. The mean slippage mutation rate of paternal origin (1.8 × 10?3) was six times higher than that observed for maternal origin (0.3 × 10?3).  相似文献   

20.
《Electrophoresis》2017,38(7):1016-1021
A Y‐STR multiplex system has been developed with the purpose of complementing the widely used 17 Y‐STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y‐STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y‐STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y‐STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y‐STRs will be an efficient and low‐cost alternative to complete the set of 23 Y‐STRs and improve allele databases for population and forensic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号