首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ionic conductivity properties of the face‐centered cubic [Ni8(OH)4(H2O)2(BDP_X)6] (H2BDP_X=1,4‐bis(pyrazol‐4‐yl)benzene‐4‐X with X=H ( 1 ), OH ( 2 ), NH2 ( 3 )) metal–organic framework (MOF) systems as well as their post‐synthetically modified materials K[Ni8(OH)5(EtO)(BDP_X)5.5] ( 1@KOH , 3@KOH ) and K3[Ni8(OH)3(EtO)(BDP_O)5] ( 2@KOH ), which contain missing‐linker defects, have been studied by variable temperature AC impedance spectroscopy. It should be noted that these modified materials exhibit up to four orders of magnitude increase in conductivity values in comparison to pristine 1 – 3 systems. As an example, the conductivity value of 5.86×10?9 S cm?1 (activation energy Ea of 0.60 eV) for 2 at 313 K and 22 % relative humidity (RH) increases up to 2.75×10?5 S cm?1 (Ea of 0.40 eV) for 2@KOH . Moreover, a further increase of conductivity values up to 1.16×10?2 S cm?1 and diminution of Ea down to 0.20 eV is achieved at 100 % RH for 2@KOH . The increased porosity, basicity and hydrophilicity of the 1@KOH – 3@KOH materials compared to the pristine 1 – 3 systems should explain the better performance of the KOH‐modified materials.  相似文献   

2.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

3.
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF‐based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF‐based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF‐based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF‐based ORR electrocatalysts are also discussed.  相似文献   

4.
Owing to their outstanding structural, chemical, and functional diversity, metal–organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy‐related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long‐range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.  相似文献   

5.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium‐ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   

6.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications.  相似文献   

7.
Conductive metal–organic frameworks (MOFs) as well as smart, stimuli‐responsive MOF materials have attracted considerable attention with respect to advanced applications in energy harvesting and storage as well as in signal processing. Here, the conductance of MOF films of type UiO‐67 with embedded photoswitchable nitro‐substituted spiropyrans was investigated. Under UV irradiation, the spiropyran (SP) reversibly isomerizes to the open merocyanine (MC) form, a zwitterionic molecule with an extended conjugated π‐system. The light‐induced SP–MC isomerization allows for remote control over the conductance of the SP@UiO‐67 MOF film, and the conductance can be increased by one order of magnitude. This research has the potential to contribute to the development of a new generation of photoelectronic devices based on smart hybrid materials.  相似文献   

8.
In recent years, metal–organic frameworks (MOFs) have become an area of intense research interest because of their adjustable pores and nearly limitless structural diversity deriving from the design of different organic linkers and metal structural building units (SBUs). Among the recent great challenges for scientists include switchable MOFs and their corresponding applications. Switchable MOFs are a type of smart material that undergo distinct, reversible, chemical changes in their structure upon exposure to external stimuli, yielding interesting technological applicability. Although the process of switching shares similarities with flexibility, very limited studies have been devoted specifically to switching, while a fairly large amount of research and a number of Reviews have covered flexibility in MOFs. This Review focuses on the properties and general design of switchable MOFs. The switching activity has been delineated based on the cause of the switching: light, spin crossover (SCO), redox, temperature, and wettability.  相似文献   

9.
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.  相似文献   

10.
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly‐spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution‐based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.  相似文献   

11.
Nanoporous carbon–cobalt‐oxide hybrid materials are prepared by a simple, two‐step, thermal conversion of a cobalt‐based metal–organic framework (zeolitic imidazolate framework‐9, ZIF‐9). ZIF‐9 is carbonized in an inert atmosphere to form nanoporous carbon–metallic‐cobalt materials, followed by the subsequent thermal oxidation in air, yielding nanoporous carbon–cobalt‐oxide hybrids. The resulting hybrid materials are evaluated as electrocatalysts for the oxygen‐reduction reaction (ORR) and the oxygen‐evolution reaction (OER) in a KOH electrolyte solution. The hybrid materials exhibit similar catalytic activity in the ORR to the benchmark, commercial, Pt/carbon black catalyst, and show better catalytic activity for the OER than the Pt‐based catalyst.  相似文献   

12.
Metal–organic frameworks (MOFs) are a class of promising materials for diverse heterogeneous catalysis, but they are usually not directly employed for oxygen evolution electrocatalysis. Most reports focus on using MOFs as templates to in situ create efficient electrocatalysts through annealing. Herein, we prepared a series of Fe/Ni‐based trimetallic MOFs (Fe/Ni/Co(Mn)‐MIL‐53 accordingly to the Material of Institute Lavoisier) by solvothermal synthesis, which can be directly adopted as highly efficient electrocatalysts. The Fe/Ni/Co(Mn)‐MIL‐53 shows a volcano‐type oxygen evolution reaction (OER) activity as a function of compositions. The optimized Fe/Ni2.4/Co0.4‐MIL‐53 can reach a current density of 20 mA cm?2 at low overpotential of 236 mV with a small Tafel slope of 52.2 mV dec?1. In addition, the OER performance of these MOFs can be further enhanced by directly being grown on nickel foam (NF).  相似文献   

13.
We report a new method to promote the conductivities of metal–organic frameworks (MOFs) by 5 to 7 magnitudes, thus their potential in electrochemical applications can be fully revealed. This method combines the polarity and porosity advantages of MOFs with the conductive feature of conductive polymers, in this case, polypyrrole (ppy), to construct ppy‐MOF compartments for the confinement of sulfur in Li–S batteries. The performances of these ppy‐S‐in‐MOF electrodes exceed those of their MOF and ppy counterparts, especially at high charge–discharge rates. For the first time, the critical role of ion diffusion to the high rate performance was elucidated by comparing ppy‐MOF compartments with different pore geometries. The ppy‐S‐in‐PCN‐224 electrode with cross‐linked pores and tunnels stood out, with a high capacity of 670 and 440 mAh g?1 at 10.0 C after 200 and 1000 cycles, respectively, representing a new benchmark for long‐cycle performance at high rate in Li–S batteries.  相似文献   

14.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

15.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.  相似文献   

16.
Biological ion channels and ion pumps with sub‐nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub‐nanometer solid‐state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin‐based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular‐size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid‐state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   

17.
The role of metal–organic frameworks (MOFs) in the field of catalysis is discussed, and special focus is placed on their assets and limits in light of current challenges in catalysis and green chemistry. Their structural and dynamic features are presented in terms of catalytic functions along with how MOFs can be designed to bridge the gap between zeolites and enzymes. The contributions of MOFs to the field of catalysis are comprehensively reviewed and a list of catalytic candidates is given. The subject is presented from a multidisciplinary point of view covering solid‐state chemistry, materials science, and catalysis.  相似文献   

18.
An anionic metal–organic framework, H3[(Mn4Cl)3 L 8]?30 H2O?2.5 DMF?5 Diox ( UPC‐15 ), was successfully prepared by the reaction of MnCl2 with tris(p‐carboxylic acid)tridurylborane (H3 L ) under solvothermal conditions. UPC‐15 with wide‐open pores (~18.8 Å) is constructed by packing of octahedral and cuboctahedral cages, and exhibits high gas‐sorption capabilities. Notably, UPC‐15 shows selective adsorption of cationic dyes due to the anion framework. Moreover, the catalytic and magnetic properties were investigated, and UPC‐15 can highly catalyze the cyanosilylation of aromatic aldehydes. UPC‐15 exhibits the exchange of metal ions from Mn to Cu in a single‐crystal‐to‐single‐crystal manner to generate UPC‐16 , which could not be obtained by the direct solvothermal reaction of CuCl2 and H3 L. UPC‐16 exhibits similar properties for gas sorption, dye separation, and catalytic activity. However, the magnetic behaviors for UPC‐15 and UPC‐16 are distinct due to the metal‐specific properties. Below 47 K, UPC‐15 exhibits a ferromagnetic coupling but UPC‐16 shows a dominant antiferromagnetic behavior.  相似文献   

19.
Sphere of destiny : Metal–organic spheres with remarkable encapsulation properties are readily prepared and their ability to host a wide range of guest species, including nanoparticles, fluorescent dyes, and quantum dots, is demonstrated. Both the metal–organic spheres and the encapsulated species maintain their fluorescent or magnetic properties, highlighting the importance of these systems as new multifunctional materials.

  相似文献   


20.
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号