首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
A series of 1,3‐indandione‐terminated π‐conjugated quinoids were synthesized by alkoxide‐mediated rearrangement reaction of the respective alkene precursors, followed by air oxidation. This new protocol allows access to quinoidal compounds with variable termini and cores. The resulting quinoids all show LUMO levels below ?4.0 eV and molar extinction coefficients above 105 L mol?1 cm?1. The optoelectronic properties of these compounds can be regulated by tuning the central cores as well as the aryl termini ascribed to the delocalized frontier molecular orbitals over the entire molecular skeleton involving aryl termini. n‐Channel organic thin‐film transistors with electron mobility of up to 0.38 cm2 V?1 s?1 were fabricated, showing the potential of this new class of quinoids as organic semiconductors.  相似文献   

2.
Increasing the length of N‐heteroacenes or their analogues is highly desirable because such materials could have great potential applications in organic electronics. In this report, the large π‐conjugated N‐heteroquinone 6,10,17,21‐tetra‐((triisopropylsilyl)ethynyl)‐5,7,9,11,16,18,20,22‐octaazanonacene‐8,19‐dione (OANQ) has been synthesized and characterized. The as‐prepared OANQ shows high stability under ambient conditions and has a particularly low LUMO level, which leads to it being a promising candidate for air‐stable n‐type field‐effect transistors (FETs). In fact, FET devices based on OANQ single crystals have been fabricated and an electron mobility of up to 0.2 cm2 V?1 s?1 under ambient conditions is reported. More importantly, no obvious degradation was observed even after one month. Theoretical calculations based on the single crystal are consistent with the measured mobility.  相似文献   

3.
A quinoidal small‐molecule semiconductor QDPPBTT was synthesized. Organic thin‐film transistor (OTFT) devices based on QDPPBTT showed an electron mobility as high as 0.13 cm2 V?1 s?1 and Ion/Ioff ratio of 106 under ambient conditions. We suggested that 2D extended π‐conjugation and quinoid‐enhancing effect had an important role in electron mobility and stability of n‐type FET devices, which might be a good strategy in designing new material systems.  相似文献   

4.
Two diketopyrrolopyrrole (DPP)‐based donor–acceptor (D–A) conjugated molecules, DPP‐F and DPP‐2F, which contain E‐(1,2‐difluorovinyl) moieties, are reported. The LUMO energies of DPP‐F and DPP‐2F were estimated to be ?3.49 and ?3.70 eV, respectively, based on their redox potentials and absorption spectral data; these values were clearly lowered because of the incorporation of electron‐withdrawing E‐(1,2‐difluorovinyl) moieties. Organic field‐effect transistors (OFETs) with thin films of DPP‐F and DPP‐2F were successfully fabricated with conventional techniques. Based on the respective transfer and output characteristics measured in an inert atmosphere, thin films of DPP‐2F display ambipolar semiconducting behavior with hole and electron mobilities reaching 0.42 and 0.80 cm2 V?1 s?1, respectively. The as‐prepared OFET of DPP‐2F already shows high hole and electron mobilities that are not influenced remarkably by thermal annealing. For thin films of DPP‐F, only p‐type semiconducting behavior was observed in both an inert atmosphere and air, and the hole mobility increased to 0.1 cm2 V?1 s?1 after thermal annealing. XRD and AFM studies were performed with thin films of DPP‐F and DPP‐2F after annealing at different temperatures.  相似文献   

5.
New arylacetylene‐substituted naphthalene diimides (NDIs) 1–6 , with both light‐emitting and semiconducting functions, are reported. Among them, the crystal structure of 1 was determined. On the basis of their reduction potentials and thin‐film absorption spectra, the HOMO/LUMO energies of these modified NDIs were estimated. The results reveal that their HOMO/LUMO energies are slightly affected by the flanking aryl groups. The emission colors of these NDIs vary from green to red, and interestingly, they show aggregation‐induced emission enhancement behavior with fluorescence quantum yields reaching 9.86 % in the solid state. Microrods of 1 , 3 , and 5 show typical optical wave‐guiding behavior with relatively low optical‐loss coefficients. Organic field‐effect transistors with thin films of these NDIs were fabricated with conventional techniques. The results indicate that thin films of 2 , 4 , and 6 , with long and branched alkyl chains, show air‐stable n‐type semiconducting properties with electron mobilities of up to 0.035 cm2 V?1 s?1 after thermal annealing, whereas 1 , 3 , and 5 , with short alkyl chains, behave as n‐type semiconductors under a nitrogen atmosphere with electron mobilities of up to 0.075 cm2 V?1 s?1 after thermal annealing.  相似文献   

6.
A series of unsymmetrical naphthalene imide derivatives ( 1a , 1b , 2 , 3 , 4 , 5 ) with high electron affinity was synthesized and used in n‐channel organic field‐effect transistors (OFETs). They have very good solubility in common organic solvents and good thermal stability up to 320 °C. Their photophysical, electrochemical, and thermal properties were investigated in detail. They showed low‐lying LUMO energy levels from ?3.90 to ?4.15 eV owing to a strong electron‐withdrawing character. Solution‐processed thin‐film OFETs based on 1a , 1b , 2 , 3 , 4 were measured in both N2 and air. They all showed n‐type FET behavior. The liquid‐crystalline compounds 1a , 1b , and 3 showed good performance owing to the self‐healing properties of the film in the liquid‐crystal phase. Compound 3 has an electron mobility of up to 0.016 cm2 V?1 s?1 and current on/off ratios of 104–105.  相似文献   

7.
It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole‐ and electron‐transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron‐withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm2 V?1 s?1, which suggested that these copolymers are promising ambipolar semiconductor materials.  相似文献   

8.
Increasing the length of N‐heteroacenes or their analogues is highly desirable because such materials could have great potential applications in organic electronics. In this report, the large π‐conjugated N‐heteroquinone 6,10,17,21‐tetra‐((triisopropylsilyl)ethynyl)‐5,7,9,11,16,18,20,22‐octaazanonacene‐8,19‐dione (OANQ) has been synthesized and characterized. The as‐prepared OANQ shows high stability under ambient conditions and has a particularly low LUMO level, which leads to it being a promising candidate for air‐stable n‐type field‐effect transistors (FETs). In fact, FET devices based on OANQ single crystals have been fabricated and an electron mobility of up to 0.2 cm2 V−1 s−1 under ambient conditions is reported. More importantly, no obvious degradation was observed even after one month. Theoretical calculations based on the single crystal are consistent with the measured mobility.  相似文献   

9.
The synthesis of novel π‐extended N‐heteroacenes, which have a large tetraazaacene subunit and a quinoxaline subunit connected through a four‐membered ring, is reported. They were studied with experimental and computational methods in comparison to the corresponding tetraazaacenes. As found from the DFT calculation, the four‐membered ring is a better linker than a five‐membered ring or a C?C single bond to extend N‐heteroacenes for a new design of n‐type semiconductors in terms of the spatial delocalization and energy level of LUMO as well as the reorganization energy. In solution‐processed thin film transistors, the π‐extended N‐heteroacenes are found to function as n‐type semiconductors with field effect mobility of up to 0.02 cm2 V?1 s?1 under ambient conditions.  相似文献   

10.
A new acceptor–donor–acceptor (A–D–A) small molecule based on benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) is synthesized via a Stille cross‐coupling reaction. A highly conjugated selenophene‐based side group is incorporated into each BDT unit to generate a 2D soluble small molecule (SeBDT‐DPP). SeBDT‐DPP thin films produce two distinct absorption peaks. The shorter wavelength absorption (400 nm) is attributed to the BDT units containing conjugated selenophene‐based side groups, and the longer wavelength band is due to the intramolecular charge transfer between the BDT donor and the DPP acceptor. SeBDT‐DPP thin films can harvest a broad solar spectrum covering the range 350–750 nm and have a low bandgap energy of 1.63 eV. Solution‐processed field‐effect transistors fabricated with this small molecule exhibit p‐type organic thin film transistor characteristics, and the field‐effect mobility of a SeBDT‐DPP device is measured to be 2.3 × 10−3 cm2 V−1 s−1. A small molecule solar cell device is prepared by using SeBDT‐DPP as the active layer is found to exhibit a power conversion efficiency of 5.04% under AM 1.5 G (100 mW cm−2) conditions.

  相似文献   


11.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

12.
Low n‐doping efficiency and inferior stability restrict the thermoelectric performance of n‐type conjugated polymers, making their performance lag far behind of their p‐type counterparts. Reported here are two rigid coplanar poly(p‐phenylene vinylene) (PPV) derivatives, LPPV‐1 and LPPV‐2 , which show nearly torsion‐free backbones. The fused electron‐deficient rigid structures endow the derivatives with less conformational disorder and low‐lying lowest unoccupied molecular orbital (LUMO) levels, down to ?4.49 eV. After doping, two polymers exhibited high n‐doping efficiency and significantly improved air stability. LPPV‐1 exhibited a high conductivity of up to 1.1 S cm?1 and a power factor as high as 1.96 μW m?1 K?2. Importantly, the power factor of the doped LPPV‐1 thick film degraded only 2 % after 7 day exposure to air. This work demonstrates a new strategy for designing conjugated polymers, with planar backbones and low LUMO levels, towards high‐performance and potentially air‐stable n‐type polymer thermoelectrics.  相似文献   

13.
A novel cross‐linkable electron‐transport material has been designed and synthesized for use in the fabrication of solution‐processed OLEDs. The material exhibits a low LUMO level of ?3.51 eV, a high electron mobility of 1.5×10?5 cm2 V?1 s?1, and excellent stability. An average 9.3 % shrinkage in film thickness was observed for the film after thermal curing. A maximum external quantum efficiency (EQE) of 15.6 % (35.0 cd A?1) was achieved for blue‐phosphorescent OLEDs by spin‐coating and 13.8 % (31.0 cd A?1) for an ink‐jet‐printed device, both of which are better than the EQE of a control device prepared by vacuum‐deposition (see figure).  相似文献   

14.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

15.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

16.
Herein, we report the synthesis, characterization, and field‐effect properties of two cross‐conjugated dithienylmethanone (DMO)‐based alternating polymers, namely, PDMO‐S and PDMO‐Se . Both polymers possess high thermal stability, good solubility, and broad absorption spectra. Their electrochemical properties were investigated using cyclic voltammetry, indicating that PDMO‐Se has higher HOMO/LUMO energy levels of −5.49/−3.49 eV than −5.57/−3.58 eV of PDMO‐S . The two polymers exhibited promising charge transport properties with the highest hole mobility of 0.12 cm2 V−1 s−1 for PDMO‐S and 0.025 cm2 V−1 s−1 for PDMO‐Se . AFM and 2D‐GIXRD analyses demonstrated that the PDMO‐S formed lamellar, edge‐on packing thin film with close ππ stacking. These findings suggest that cross‐conjugated polymers might be potential semiconducting materials for low‐cost and flexible organic electronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1012–1019  相似文献   

17.
We disclose a novel strategy to design n‐type acenes through the introduction of boron–nitrogen coordination bonds (B←N). We synthesized two azaacenes composed of two B←N units and six/eight linearly annelated rings. The B←N unit significantly perturbed the electronic structures of the azaacenes: Unique LUMOs delocalized over the entire acene skeletons and decreased aromaticity of the B←N‐adjacent rings. Most importantly, these B←N‐containing azaacenes exhibited low‐lying LUMO energy levels and high electron affinities, thus leading to n‐type character. The solution‐processed organic field‐effect transistor based on one such azaacene exhibited unipolar n‐type characteristics with an electron mobility of 0.21 cm2 V?1 s?1.  相似文献   

18.
Organic field‐effect transistors incorporating planar π‐conjugated metal‐free macrocycles and their metal derivatives are fabricated by vacuum deposition. The crystal structures of [H2(OX)] (H2OX=etioporphyrin‐I), [Cu(OX)], [Pt(OX)], and [Pt(TBP)] (H2TBP=tetra‐(n‐butyl)porphyrin) as determined by single crystal X‐ray diffraction (XRD), reveal the absence of occluded solvent molecules. The field‐effect transistors (FETs) made from thin films of all these metal‐free macrocycles and their metal derivatives show a p‐type semiconductor behavior with a charge mobility (μ) ranging from 10?6 to 10?1 cm2 V?1 s?1. Annealing the as‐deposited Pt(OX) film leads to the formation of a polycrystalline film that exhibits excellent overall charge transport properties with a charge mobility of up to 3.2×10?1 cm2 V?1 s?1, which is the best value reported for a metalloporphyrin. Compared with their metal derivatives, the field‐effect transistors made from thin films of metal‐free macrocycles (except tetra‐(n‐propyl)porphycene) have significantly lower μ values (3.0×10?6–3.7×10?5 cm2 V?1 s?1).  相似文献   

19.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

20.
Attachment of bulky substituents at both thiophene donor (D) and thiazole acceptor (A) heterocycles of a dipolar (μg=10.4 D) D‐π‐A merocyanine dye affords a more than 1 Å expansion of the common antiparallel supramolecular dimer motif in the solid state, enabling very close π‐contacts (3.36 Å) to two other neighbor molecules on each of the two remaining π‐faces. This unusual packing motif leads to three‐dimensional percolation pathways for hole transport and affords thin‐film transistors with mobility up to 0.64 cm2 V?1 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号