首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)]s ( 8 ) and poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)]s ( 10 ) were synthesized by the Wittig reaction to provide materials containing 45–62% cis‐vinylene bonds. The optical characteristics of 8 and 10 were compared with those of their respective isomers, 3 and 4 , the cis‐vinylene contents of which were significantly lower (9–16%). Although a greater fraction of cis‐CH?CH linkages caused the absorption maximum (λmax) of 8 and 10 to be slightly blueshifted (by ~3–6 nm) from that of 3 and 4 , the impact of the vinylene bond geometry appeared to be negligible on their fluorescence spectra. The fluorescence quantum efficiencies of 8 and 10 were estimated to be approximately 0.25 and 0.72, respectively. Both 8 (λmax ≈ 445 or 462 nm) and 10 (λmax ≈ 480 or 506 nm) were electroluminescent, showing effective color tuning by the controlled insertion of m‐phenylene moieties. The external electroluminescence quantum efficiencies were determined to be 4.26 × 10?3% for 8 and 0.63% for 10 . The cis/trans‐vinylene bond ratio had a great impact on the electroluminescence device performance of 8 but a much smaller impact on the performance of 10 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 303–316, 2004  相似文献   

2.
Laser flash photolysis of ketone 1 in argon‐saturated methanol yields triplet biradical 1BR (τ = 63 ns) that intersystem crosses to form photoenols Z‐1P (λmax = 350 nm, τ ~ 10 μs) and E‐1P (λmax = 350 nm, τ > 6 ms). The activation barrier for Z‐1P re‐forming ketone 1 through a 1,5‐H shift was determined as 7.7 ± 0.3 kcal mol?1. In contrast, for ketone 2, which has a less sterically hindered carbonyl moiety, laser flash photolysis in argon‐saturated methanol revealed the formation of biradical 2BR (λmax = 330 nm, τ ~ 303 ns) that intersystem crosses to form photoenol E‐2P (λmax = 350 nm, τ > 42 μs), but photoenol Z‐2P was not detected. However, in more viscous basic H‐bond acceptor (BHA) solvent, such as hexamethylphosphoramide, triplet 2BR intersystem crosses to form both Z‐2P (λmax = 370 nm, τ ~ 1.5 μs) and E‐2P. Thus, laser flash photolysis of ketone 2 in methanol reveals that intersystem crossing from 2BR to form Z‐2P is slower than the 1,5‐H shift of Z‐2P, whereas in viscous BHA solvents, the 1,5‐H shift becomes slower than the intersystem crossing from 2BR to Z‐2P. Density functional theory and coupled cluster calculations were performed to support the reaction mechanisms for photoenolization of ketones 1 and 2 .  相似文献   

3.
We report DFT studies on some perylene‐based dyes for their electron transfer properties in solar cell applications. The study involves modeling of different donor‐π‐acceptor type sensitizers, with perylene as the donor, furan/pyrrole/thiophene as the π‐bridge and cyanoacrylic group as the acceptor. The effect of different π‐bridges and various substituents on the perylene donor was evaluated in terms of opto‐electronic and photovoltaic parameters such as HOMO‐LUMO energy gap, λmax, light harvesting efficiency(LHE), electron injection efficiency (Øinject), excited state dye potential (Edye*), reorganization energy(λ), and free energy of dye regeneration (). The effect of various substituents on the dye–I2 interaction and hence recombination process was also evaluated. We found that the furan‐based dimethylamine derivative exhibits a better balance of the various optical and photovoltaic properties. Finally, we evaluated the overall opto‐electronic and transport parameters of the TiO2‐dye assembly after anchoring the dyes on the model TiO2 cluster assembly.  相似文献   

4.
New through‐space cyano‐substituted poly(p‐arylenevinylene)s containing a [2.2]paracyclophane unit were synthesized by the Knoevenagel reaction. Polymers 5 and 7 have cyano groups at α‐positions and β‐positions from the dialkoxyphenylene unit, respectively. Their optical and electrochemical behaviors were investigated in detail in comparison with their model compounds. Polymers 5 and 7 exhibited through‐space conjugation via the cyclophane units. Polymer 5 showed greenish blue emission (λmax = 477 nm) in diluted solution with fluorescence quantum efficiency (?F) of only 0.007, whereas polymer 7 emitted in the bluish green region (λmax = 510 nm) with ?F of 0.32. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5979–5988, 2009  相似文献   

5.
Twenty‐four D‐A′–π‐A dyes were rapidly synthesized through a one‐pot three‐component Suzuki–Miyaura coupling reaction, which was assisted by microwave irradiation. We measured the absorption spectra, electrochemical properties, and solar‐cell performance of all the synthesized dyes. The D5 πA4 dye contained our originally designed rigid and nonplanar donor and exerted the highest efficiency at 5.4 %. The short‐circuit current (Jsc) was the most important parameter for the conversion efficiency (η) in the case of the organic D‐A′‐π‐A dyes. Optimal ranges for the D‐A′‐π‐A dyes were observed for high values of Jsc/λmax at λ=560–620 nm, an optical‐absorption edge of λ=690–790 nm, and EHOMO and ELUMO values of <1.14 and ?0.56 to ?0.76 V, respectively.  相似文献   

6.
An N21,N22‐carbonyl‐bridged mesobiliverdin, prepared in high yield by reaction of the unbridged parent (λmax 639 nm, ? 15,700, chloroform) with 1,1′‐carbonyldiimidazole and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, gave magenta‐colored solutions in chloroform that absorb strongly in the visible spectrum (λmax 534 nm, ? 27,700) and shifted to bright blue (λmax 669 nm, ? 35,300) upon addition of trifluoroacetic acid.  相似文献   

7.
We report light‐induced reactions in a two‐chromophore system capable of sequence‐independent λ‐orthogonal reactivity relying solely on the choice of wavelength and solvent. In a solution of water and acetonitrile, LED irradiation at λmax=285 nm leads to full conversion of 2,5‐diphenyltetrazoles with N‐ethylmaleimide to the pyrazoline ligation products. Simultaneously present o‐methylbenzaldehyde thioethers are retained. Conversely, LED irradiation at λmax=382 nm is used to induce ligation of the o‐methylbenzaldehydes in acetonitrile with N‐ethylmaleimide via o‐quinodimethanes, while 2,5‐diphenyltetrazoles also present are retained. This unprecedented photochemical selectivity is achieved through control of the number and wavelength of incident photons as well as favorable optical properties and quantum yields of the reactants in their environment.  相似文献   

8.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

9.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

10.
A new regioregular head‐to‐tail (HT)‐type polypyridine with methoxyethoxyethoxy (MEEO) side chains, HT‐PMEEOPy, was synthesized by means of Kumada‐Tamao coupling polymerization of a Grignard monomer with a Ni catalyst. Although the polymer was precipitated in THF during polymerization, multiangle laser light scattering (MALLS) analysis indicated that the weight‐average molecular weight (Mw) was about 25,000. The HT content in the polymer was 95%. A solution of HT‐PMEEOPy in CHCl3 was found to emit a strong blue light when the solution was irradiated with UV light; the UV‐vis absorption maximum (λmax) and photoluminescence maximum (λmax em) were at 392 and 460 nm, respectively. To clarify the effect of regioregularity of PMEEOPy on the photoluminescence, head‐to‐head (HH) PMEEOPy was synthesized by means of Yamamoto coupling polymerization. The photoluminescence of HH‐PMEEOPy (λmax = 330 nm, λmax em = 414 nm) was weaker than that of HT‐PMEEOPy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Photoreactive and thermoresponsive N‐isopropylacrylamide (NIPAM)–surfmer copolymer hydrogels containing 4,4′‐di(6‐sulfato‐hexyloxy)azobenzene (DSHA) dianions are described. The functional hydrogels are obtained in a two steps. First a micellar aqueous solution of (11‐(acryloyloxy)undecyl)trimethylammonium bromide (AUTMAB) and NIPAM is exposed to 60Co‐gamma irradiation, and a thermoresponsive copolymer gel is obtained. Second, DSHA is included by shrinking the gel at 50 °C and subsequent reswelling in an aqueous solution of DSHA disodium salt at 20 °C. Reswelling is accompanied by electrostatic adsorption of DSHA dianions at the positively charged AUTMAB headgroups replacing the bromide ions. Gels containing trans‐DSHA are transparent yellow at room temperature (λmax = 370 nm), while gels containing cis‐rich DSHA are orange (λmax = 460 and 330 nm). Energy dispersive X‐ray measurements indicate that 41% of the bromide ions are exchanged if trans‐DSHA is used for adsorption, and only 7.5% if cis‐DSHA is used. The incorporation of DSHA lowers the lower critical solution temperature (LCST) from 34 to 32 °C. Below the LCST, DSHA can be switched from the trans‐ to the cis‐rich state and vice versa upon irradiation with UV (λ = 366 nm) or visible light (λ ≥ 450 nm). Above the LCST no photoreaction takes place.  相似文献   

12.
A p‐quinodimethane (p‐QDM)‐bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross‐conjugated keto‐linked porphyrin dimers 8 a and 8 b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel–Crafts alkylation of the diol‐linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one‐photon absorption (OPA, λmax=955 nm, ε=45400 M ?1 cm?1) and a large two‐photon absorption (TPA) cross‐section (σ(2)max=2080 GM at 1800 nm) in the near‐infrared (NIR) region due to its extended π‐conjugation and quinoidal character. It also exhibits a short singlet excited‐state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground‐state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto‐linked dimer 8 b . This research has revealed that incorporation of a p‐QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.  相似文献   

13.
The large redshift of near‐infrared (NIR) absorptions of nitro‐substituted anthraquinone imide (Nitro‐AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO–LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron‐withdrawing dicyanovinyl (di‐CN) substituent was designed and prepared. The resulting molecule, di‐CN‐AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700–1000 (λmax≈860 nm) and λ=1100–1800 nm (λmax≈1400 nm) upon one‐electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple–red. The relationship between calculated radical anionic HOMO–LUMO gaps and the electron‐withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design.  相似文献   

14.
Carbazole and fluorene‐based random and alternating copolycondensates were synthesized to develop high‐performance blue light‐emitting polymers by improving electron injection ability of poly(N‐aryl‐2,7‐carbazole)s that showed intense blue electroluminescence (EL) with good hole‐injection and ‐transport ability. These copolycondensates absorbed light energy at about λmax = 390 nm in CHCl3 and 400 nm in film state, and fluoresced at about λmax = 417 nm in CHCl3 and 430 nm in the thin film state. Energy gaps between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of them were about 2.9 eV, and the energy levels of LUMO situated lower than that of corresponding polycarbazole. Polymer light‐emitting diode devices having configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate)/polymer/CsF/Al using the copolycondensates, poly(N‐arylcarbazole‐2,7‐diyl), and poly(9,9‐dialkylfluorene‐2,7‐diyl), emitted bluish EL at operating voltages lower than 7 V. The device embedded the random copolycondensate showed notably higher performance with maximum luminance of 31,200 cd m?2 at 11.0 V, and the current efficiencies observed under operating voltages lower than 7 V were higher than those of the other devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A series of π‐conjugated polymers and copolymers containing 1,4‐dioxo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole (also known as 2,5‐dihydro‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole‐1,4‐dione) (DPP) and 1,4‐phenylene units in the main chain is described. The polymers are synthesised using the palladium‐catalysed aryl‐aryl coupling reaction (Suzuki coupling) of 2,5‐dihexylbenzene‐1,4‐diboronic acid with 1,4‐dioxo‐2,5‐dihexyl‐3,6‐di(4‐bromophenyl)pyrrolo[3,4‐c]pyrrole and 1,4‐dibromo‐2,5‐dihexylbenzene in different molar ratios. Soluble hairy rod‐type polymers with molecular weights up to 21 000 are obtained. Polymer solutions in common organic solvents such as chloroform or xylene are of orange colour (λmax = 488 nm) and show strong photoluminescence (λmax = 544 nm). The photochemical stability is found to be higher than for corresponding saturated polymers containing isolated DPP units in the main chain. Good solubility and processability into thin films render the compounds suitable for electronic applications.  相似文献   

16.
Two synthetic nanographenes (NGs), N‐H7H and C‐H7H , were prepared. N‐H7H is doped with nitrogen, and C‐H7H is the all‐carbon analogue. Both are hexapole [7]helicenes (H7Hs), and their structures were identified by single‐crystal X‐ray diffraction. Sharp contrasts in absorption (absλmax, 683 vs. 593 nm), emission (emλmax, 894 vs. 777 nm), and electrochemical behavior (oxE1, 0.28 vs. 0.53 V) were observed between N‐H7H and C‐H7H , and the origin of these differences was rationalized by theoretical calculations. Studies on N‐H7H and C‐H7H set a clear example to elucidate the remarkable effects of N‐doping on the physical properties of NGs.  相似文献   

17.
π‐Conjugated polymers (Poly1–Poly3) containing a 2,2′‐bipyridine (bpy) unit were subjected to coordination to nickel and copper dithiolate for the purpose of manipulating the photophysical properties. The absorption maximum peak of Poly1 [maximum wavelength (λmax) = 446 nm] redshifted by 36 nm upon the coordination of bpy to NiCl2, which produced Poly1–NiCl2. A further bathochromic shift was observed in the spectrum of Poly1–mntNi [mntNi = (maleonitrile dithiolate)nickel; λmax = 499 nm] bearing the dithiolate ligand, which stemmed from the extension of the conjugated system over the nickel dithiolate moiety through the bpy unit. An increase in the [Ni]/[bpy] ratio in Poly1–mntNi rendered the original maximum peak at 446 nm smaller and the lower energy charge‐transfer peak at 499 nm larger; the isosbestic points remained at 380 and 475 nm. The green fluorescence (λmax = 504 nm) emitted from Poly1 markedly diminished upon the coordination of nickel dithiolate because of the effective energy transfer. The absorption maximum peak of Poly1–mntNi in chloroform at 499 nm blueshifted to 471 nm when the volume ratio of the chloroform/N,N‐dimethylformamide solvent reached 10:90. The coordination of nickel dithiolate to Poly2 and Poly3 also brought about redshifts of the absorption maximum peaks of as much as 55 and 61 nm, respectively. The absorption maximum peak of Poly1–(phenyldithiolate)nickel(pdtNi) (λmax = 474 nm) redshifted by 28 nm in comparison with that of Poly1, whereas the magnitude of the shift of Poly1–bis(thiophenoxide)nickel(btpNi) bearing two thiophenoxide ligands was 20 nm. Poly1–mntCu with a tetrahedral copper center was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2631–2639, 2004  相似文献   

18.
A series of water‐soluble red‐emitting distyryl‐borondipyrromethene (BODIPY) dyes were designed and synthesized by using three complementary approaches aimed at introducing water‐solubilizing groups on opposite faces of the fluorescent core to reduce or completely suppress self‐aggregation. An additional carboxylic acid functional group was introduced at the pseudo‐meso position of the BODIPY scaffold for conjugation to amine‐containing biomolecules/biopolymers. The optical properties of these dyes were evaluated under simulated physiological conditions (i.e., phosphate‐buffered saline (PBS), pH 7.5) or in pure water. The emission wavelength (λmax) of these labels was found in the 640–660 nm range with quantum yields from modest to unprecedentedly high values (4 to 38 %). The bioconjugation of these distyryl‐BODIPY dyes with bovine serum albumin (BSA) and the monoclonal antibody (mAb) 12A5 was successfully performed under mild aqueous conditions.  相似文献   

19.
This article describes the synthesis and characterization of a new ladder‐type poly (p‐phenylene) (LPFC) containing alkylcarbazole and dialkylfluorene units in backbone, and its optical and electrochemical properties as well as its light‐emitting device performance. LPFC shows the well‐defined structure, high molecular weights, excellent thermal stability, and good solubility in common organic solvents. And it also shows strongly blue emission (λmax = 465 nm) with quantum efficiency of 70% in solution, while its solid emission (λmax = 470 nm) is almost the same as its solution. Electrochemical studies show that the highest occupied molecular orbital (HOMO) energy levels of LPFC is up to 5.29 eV, which is significantly higher than that of LPPP without carbazole in backbone, indicating an enhanced ability of hole injection from anodes. Furthermore, the single layer light‐emitting device using LPFC as the active layer shows blue emission (λmax = 470 nm) with maximum luminescence of ~ 2000 cd/m2 and maximum luminance efficiency of 0.43 cd/A. The attractive properties exhibited from new ladder‐type polymer establish LPFC as a good candidate for the potential application as transporting and emitting layer in polymeric light emitting diodes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3120–3127, 2008  相似文献   

20.
The reaction of 2,5‐diiodo‐1,4‐benzenedicarbonyl chloride, C6H2I2(COCl)2p, with 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO‐ol) gave I–Ph(COO–TEMPO)2–I, Monomer‐1. Pd‐catalyzed polycondensation of Monomer‐1 with Me3Sn‐Th‐SnMe3 (2,5‐bis(trimethylstannyl)thiophene) and Bu3Sn–CH = CH–SnBu3 (1,2‐bis‐(tributylstannyl)ethylene) gave the corresponding π‐conjugated polymers, Polymer‐1 and Polymer‐2, respectively. Monomer‐1 was converted to a diethynyl compound, H–C ≡ C–Ph(COO–TEMPO)2–C ≡ C–H (Monomer‐1'), and Pd‐catalyzed polycondensation between Monomer‐1 and Monomer‐1' gave a π‐conjugated poly(arylene ethynylene) type polymer, Polymer‐3. According to the expansion of the π‐conjugation system by the polymerization, the UV–vis peaks of Monomer‐1 (λmax = 323 nm) and Monomer‐1' (327 nm) are shifted to longer wavelengths (λmax = 365 nm, 385 nm, and 396 nm for Polymer‐1, Polymer‐2, and Polymer‐3, respectively). Polymer‐1–Polymer‐3 showed ESR signals at about g = 2.01 with reasonable intensities. They are electrochemically active and showed a peak current anodic (oxidation) peak at about 0.9 V versus Ag/AgCl, which is reasonable for TEMPO polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号