首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new intracellular delivery system based on an apoptotic protein‐loaded calcium carbonate (CaCO3) mineralized nanoparticle (MNP) is described. Apoptosis‐inducing cytochrome c (Cyt c) loaded CaCO3 MNPs (Cyt c MNPs) were prepared by block copolymer mediated in situ CaCO3 mineralization in the presence of Cyt c. The resulting Cyt c MNPs had a vaterite polymorph of CaCO3 with a mean hydrodynamic diameter of 360.5 nm and exhibited 60 % efficiency for Cyt c loading. The Cyt c MNPs were stable at physiological pH (pH 7.4) and effectively prohibited the release of Cyt c, whereas, at intracellular endosomal pH (pH 5.0), Cyt c release was facilitated. The MNPs enable the endosomal escape of Cyt c for effective localization of Cyt c in the cytosols of MCF‐7 cells. Flow cytometry showed that the Cyt c MNPs effectively induced apoptosis of MCF‐7 cells. These findings indicate that the CaCO3 MNPs can meet the prerequisites for delivery of cell‐impermeable therapeutic proteins for cancer therapy.  相似文献   

2.
Cytochrome (cyt) c transports electrons from Complex III to Complex IV in mitochondria. Cyt c is ordinarily anchored to the mitochondrial membrane through interaction with cardiolipin (CL), however its release into the cytosol initiates apoptosis. The cyt c interaction site with CL‐containing bicelles was characterized by NMR spectroscopy. Chemical shift perturbations in cyt c signals upon interaction with bicelles revealed that a relatively wide region, which includes the A‐site, the CXXCH motif, and the N‐ and C‐terminal helices, and contains multiple Lys residues, interacts cooperatively with CL. The specific cyt c–CL interaction increased with increasing CL molecules in the bicelles. The location of the cyt c interaction site for CL was similar to those for Complex III and Complex IV, thus indicating that cyt c recognizes lipids and partner proteins in a similar way. In addition to elucidating the cyt c membrane‐binding site, these results provide insight into the dynamic aspect of cyt c interactions in mitochondria.  相似文献   

3.
Herein, we report a versatile surface chemistry methodology to covalently immobilize ligands and proteins to self‐assembled monolayers (SAMs) on gold electrode. The strategy is based on two steps: 1) the coupling of soluble azido‐PEG‐amimo ligand with an alkynyl‐terminated monolayer via click reaction and 2) covalent immobilization hemoglobin (Hb) to the amine‐terminated ligand via carbodiimide reaction. Surface‐enhanced Raman scattering spectroscopy (SERS), atomic force microscopy (AFM), reflection absorption infrared spectroscopy (RAIR) and cyclic voltammetry are used to characterize the model interfacial reactions. We also demonstrate the excellent biocompatibility of the interface for Hb immobilization and reliable application of the proposed method for H2O2 biosensing. Moreover, the redox thermodynamics of the Fe3+/Fe2+ couple in Hb is also investigated.  相似文献   

4.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   

5.
Label‐free logic gates (AND, OR, and INHIBIT) based on chemiluminescence (CL) as new optical readout signal have been developed by taking advantage of the unique CL activity of luminol‐ and lucigenin‐functionalized gold nanoparticles/graphene oxide (luminol‐lucigenin/AuNPs/GO) nanocomposites. It was found that Fe2+ ions could induce the CL emission of luminol‐lucigenin/AuNPs/GO nanocomposites in alkaline solution. On this basis, by using Fe2+ ions and NaOH as the inputs and the CL signal as the output, an AND logic gate was fabricated. When the initial reaction system contained luminol‐lucigenin/AuNPs/GO nanocomposites and NaOH, either Fe2+ ions or Ag+ ions could react with the luminol‐lucigenin/AuNPs/GO nanocomposites to produce a strong CL emission. This result was used to design an OR logic gate using Fe2+ ions and Ag+ ions as the inputs and CL signal as the output. Moreover, two INHIBIT logic gates for Fe2+ and Ag+ were also developed using by NaClO and L ‐cysteine as their CL inhibitors, respectively. Furthermore, the proposed logic gates were successfully used to detect Fe2+, Ag+, and L ‐cysteine, respectively. The developed logic gates may find future applications in sensing, clinical diagnostics, and environmental monitoring.  相似文献   

6.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   

7.
Tris[3‐hydroxy‐2(1 H)‐pyridinonato] Complexes of Al3+, Cr3+, and Fe3+ – Crystal and Molecular Structures of 3‐Hydroxy‐2(1 H)‐pyridinone and Tris[3‐hydroxy‐2(1 H)‐pyridinonato]chromium(III) Tris[3‐hydroxy‐2(1 H)‐pyridinonato] complexes of Al3+, Cr3+ and Fe3+ are obtained by reactions of 3‐hydroxy‐2(1 H)pyridinone with the hydrates of AlCl3, CrCl3 or Fe(NO3) in aqueous alkaline solutions as polycrystalline precipitates. The compounds are isotypic. X‐ray structure determinations were performed on single crystals of the uncoordinated 3‐hydroxy‐2(1 H)‐pyridinone ( 1 ) (orthorhombic, space group P212121, a = 405.4(1), b = 683.0(1), c = 1770.3(3) pm, Z = 4) and of the chromium compound 3 (rhombohedral with hexagonal setting, space group R3c, a = 978.1(1), c = 2954.0(1) pm, Z = 6).  相似文献   

8.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

9.
The development of highly sensitive and selective methods for the detection of lead ion (Pb2+) is of great scientific importance. In this work, we develop a new surface‐enhanced Raman scattering (SERS)‐based sensor for the selective trace measurement of Pb2+. The SERS‐based sensor is assembled from gold nanoparticles (AuNPs) and graphene using cucurbit[7]uril (CB[7]) as a precise molecular glue and a local SERS reporter. Upon the addition of Pb2+, CB[7] forms stronger complexes with Pb2+ and desorbs from AuNPs, resulting in a sensitive “turn‐off” of SERS signals. This SERS‐based assay shows a limit of detection (LOD) of 0.3 nm and a linear detection range from 1 nm to 0.3 μm for Pb2+. The feasibility of the assay is further demonstrated by probing Pb2+ in real water samples. This SERS‐based analytical method is highly sensitive and selective, and therefore holds promising applications in environmental analysis.  相似文献   

10.
A novel carboxyphenyl covalent immobilization technique has been successfully developed to realize the effective attachment of two typical heme proteins, hemoglobin (Hb) and cytochrome c (Cyt‐c), onto underlying glassy carbon electrode (GCE). Primarily, the GCE surface is functionalized with aromatic 4‐carboxyphenyl (4‐CP) group by the electrochemical reduction of diazonium cations, producing covalently linked carboxyl‐terminated active GCE surface to work as a ‘bridge’. Then, Hb and Cyt‐c are readily attached to GCE through the ‘bridge’ by functional covalently combination between ? NH2 terminal groups of proteins and ? COOH terminal groups of 4‐CP, obtaining Hb/4‐CP/GCE and Cyt‐c/4‐CP/GCE. On both electrodes, well‐defined peaks attributing to the FeIII/FeII couple of heme group of Hb and Cyt‐c are clearly observed with the electron transfer rate constant (ks) evaluated to be 2.48±0.05 s?1 and 2.73±0.05 s?1, respectively. It is attractive that the formal potential (E°') of the immobilized Hb and Cyt‐c are estimated to be 50 and 100 mV (vs. SCE), respectively, which are closer to the standard redox potential of native Hb and Cyt‐c in solution, owing to the good biocompatibility of 4‐CP groups. The electrodes also exhibit fast response, high sensitivity and well stability for the amperometric detection of H2O2 at a fairly mild potential of 0 V without any mediators, obtaining rather small apparent Michaelis‐Menten constant (KMapp) values of 113 μM for Hb/4‐CP/GCE and 101 μM for Cyt‐c/4‐CP/GCE. All the experimental results indicated that the covalent graft 4‐carboxyphenyl group plays an important role in constructing a “biocompatible bridge” to help the direct electron transfer of Hb and Cyt‐c with favorable biocompatibility and good bio‐ electrocatalytic affinity in virtue of the substituted aryl group only consisting of C, H and O elements, which is similar with the constitutes of organics. It makes the system of functionalized covalent immobilization of proteins onto carbon electrode a promising platform for fabricating the third‐generation biosensors. A new approach for realizing direct electrochemistry of proteins, as well as design of novel bioelectronic devices has been accordingly provided.  相似文献   

11.
《中国化学会会志》2018,65(8):960-969
In the present study, Fe2+ and Ni2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 (γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+) with a high surface area has been synthesized and characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscope (SEM) techniques. Then, γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+ were used as a new and magnetically recoverable nano catalyst for the selective oxidation of sulfides to sulfoxides with 33% aqueous H2O2 (0.5 mL) as an oxidant at room temperature in good to excellent yields and short reaction time. Nontoxicity of reagent, mild reaction condition, inexpensive and high catalytic activity, simple experimental procedure, short period of conversion and excellent yields, and ease of recovery from the reaction mixture using an external magnet are the advantages of the present method.  相似文献   

12.
Bimetallic cobalt‐based spinel is sparking much interest, most notably for its excellent bifunctional performance. However, the effect of Fe3+ doping in Co3O4 spinel remains poorly understood, mainly because the surface state of a catalyst is difficult to characterize. Herein, a bifunctional oxygen electrode composed of spinel Co2FeO4/(Co0.72Fe0.28)Td(Co1.28Fe0.72)OctO4 nanoparticles grown on N‐doped carbon nanotubes (NCNTs) is designed, which exhibits superior performance to state‐of‐the‐art noble metal catalysts. Theoretical calculations and magnetic measurements reveal that the introduction of Fe3+ ions into the Co3O4 network causes delocalization of the Co 3d electrons and spin‐state transition. Fe3+ ions can effectively activate adjacent Co3+ ions under the action of both spin and charge effect, resulting in the enhanced intrinsic oxygen catalytic activity of the hybrid spinel Co2FeO4. This work provides not only a promising bifunctional electrode for zinc–air batteries, but also offers a new insight to understand the Co‐Fe spinel oxides for oxygen electrocatalysis.  相似文献   

13.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

14.
We present two ZnII‐ and CdII‐based coordination polymers (CPs), L ‐Zn and L ‐Cd , offering H‐bonding‐based cavities of varying dimensions. Both CPs were used for the highly selective detection of S2O72? and Fe3+ ions where H‐bonding based cavities played an important role. Fluorescence quenching, competitive binding studies and binding parameters substantiated significant recognition of S2O72? and Fe3+ ions by both CPs.  相似文献   

15.
Helicobacter pylori 3‐deoxy‐D ‐manno‐2‐octulosonate‐8‐phosphate (KDO8P) synthase catalyzes the conversion of D ‐arabinose‐5‐phosphate (A5P) and phosphoenolpyruvate (PEP) to produce KDO8P and inorganic phosphate. Since this protein is absent in mammals, it might therefore be an attractive target for the development of new antibiotics. Unlike E. coli KDO8P synthase (class I), the H. pylori counterpart is a class II enzyme, where it requires a divalent transition metal ion for catalysis. Although the metal ions have been shown to be important for catalysis, their role in the structure is not understood. Using electrospray ionization mass spectrometry (ESI‐MS), the role of the metal ions in H. pylori KDO8P synthase has been investigated. This protein is found to be a tetramer in the gas phase but dissociates into the dimer with increasing declustering potential (DP2) suggesting an existence of a ‘structurally specific’ tetramer. An examination of mass spectra revealed that the tetrameric state of the Cd2+‐reconstituted enzyme is less stable than those of the Zn2+‐, Co2+‐ and Cu2+‐enzymes. The stoichiometry of metal binding to the protein depends on the nature of the metal ion. Taken together, our data suggest that divalent metal ions play an important role in the quaternary structure of the protein and the tetrameric state may be primarily responsible for catalysis. This study demonstrates the first structural characterization and stoichiometry of metal binding in class II KDO8P synthase using electrospray ionization quadrupole time‐of‐flight mass spectrometry under nondenaturing conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Ferric–hydroperoxo complexes have been identified as intermediates in the catalytic cycle of biological oxidants, but their role as key oxidants is still a matter of debate. Among the numerous synthetic low‐spin FeIII(OOH) complexes characterized to date, [(L52)Fe(OOH)]2+ is the only one that has been isolated in the solid state at low temperature, which has provided a unique opportunity for inspecting its oxidizing properties under single‐turnover conditions. In this report we show that [(L52)Fe(OOH)]2+ decays in the presence of aromatic substrates, such as anisole and benzene in acetonitrile, with first‐order kinetics. In addition, the phenol products are formed from the aromatic substrates with similar first‐order rate constants. Combining the kinetic data obtained at different temperatures and under different single‐turnover experimental conditions with experiments performed under catalytic conditions by using the substrate [1,3,5‐D3]benzene, which showed normal kinetic isotope effects (KIE>1) and a notable hydride shift (NIH shift), has allowed us to clarify the role played by FeIII(OOH) in aromatic oxidation. Several lines of experimental evidence in support of the previously postulated mechanism for the formation of two caged FeIV(O) and OH . species from the FeIII(OOH) complex have been obtained for the first time. After homolytic O? O cleavage, a caged pair of oxidants [FeIVO+HO . ] is generated that act in unison to hydroxylate the aromatic ring: HO . attacks the ring to give a hydroxycyclohexadienyl radical, which is further oxidized by FeIVO to give a cationic intermediate that gives rise to a NIH shift upon ketonization before the final re‐aromatization step. Spin‐trapping experiments in the presence of 5,5‐dimethyl‐1‐pyrroline N‐oxide and GC‐MS analyses of the intermediate products further support the proposed mechanism.  相似文献   

17.
Highly selective all solid state electrochemical sensor based on a synthesized compound i.e. 2‐(1‐(2‐((3‐(2‐hydroxyphenyl)‐1H‐pyrozol‐1‐yl)methyl)benzyl)‐1H‐pyrazol‐3‐yl)phenol (I) as an ionophore has been prepared and investigated for the selective quantification of chromium(III) ions. The effect of various plasticizers, viz. dibutyl phosphonate (DBP), dibutyl(butyl) phosphonate (DBBP), nitrophenyl octyl ether (NPOE), tris‐(2‐ethylhexyl)phosphonate (TEP), tri‐butyl phosphonate (TBP), dioctyl phthalate (DOP), dioctyl sebacate (DOS), benzyl acetate (BA) and acetophenone (AP) along with anion excluders NaTPB (sodium tetraphenyl borate) and KClTPB (potassium(tetrakis‐4‐chlorophenyl)borate was also studied. The optimum composition of the best performing membrane contained (I):KClTPB:NPOE:PVC in the ratio 15 : 3 : 40 : 42 w/w. The sensor exhibited near Nernstian slope of 20.1±0.2 mV/decade of activity in the working concentration range of 1.2×10?7–1.0×10?1 M, and in a pH range of 3.8–4.5. The sensor exhibited a fast response time of 10 s and could be used for about 5 months without any considerable divergence in potentials. The proposed sensor showed very good selectivity over most of the common cations including Na+, Li+, K+, Cu2+, Sr2+, Ni2+, Co2+, Ba2+, Hg2+, Pb2+, Zn2+, Cs+, Mg2+, Cd2+, Al3+, Fe3+and La3+. The activity of Cr(III) ions was successfully determined in the industrial waste samples by using this sensor.  相似文献   

18.
Gaseous HCl as a by‐product is often produced from chlorination processes using Cl2 gas. Onsite Cl2 regeneration from HCl is highly desirable as it eliminates the need to buy new Cl2 and dispose HCl waste. A gaseous HCl electrolysis with Fe3+/Fe2+ redox‐mediated cathode is demonstrated for Cl2 regeneration. HCl is oxidized to generate Cl2 and protons in the anode while Fe3+ is reduced to Fe2+ in the cathode. Simultaneously Fe3+ is regenerated by chemical oxidation of Fe2+ by oxygen (air) that also produces water. A low operational voltage and high coulombic efficiency are achieved by using a novel composite porous membrane and hydrophobic anode. Specifically, a cell voltage of only 0.64 V is needed at the typical current density of 4 kA m−2, leading to a low energy consumption of 483 kWh per ton of Cl2 (124 kJ mol −1) which is about 50–55 % of state‐of‐the‐art HCl electrolysis processes.  相似文献   

19.
A “turn‐on” pattern Fe3+‐selective fluorescent sensor was synthesized and characterized that showed high fluorescence discrimination of Fe3+ over Fe2+ and other tested ions. With a 62‐fold fluorescence enhancement towards Fe3+, the probe was employed to detect Fe3+ in vivo in HeLa cells and Caenorhabditis elegans, and it was also successfully used to elucidate Fe3+ enrichment and exchange infected by innexin3 (Inx3) in hemichannel‐closed Sf9 cells.  相似文献   

20.
Herein, the nanoscaled ATP-responsive upconversion metal-organic frameworks(UCMOFs) are aqueousphase synthesized for co-delivery of therapeutic protein cytochrome c(Cyt c) and chemodrugs doxorubicin(DOX), achieving targeted combinational therapy of human cervical cancer. The UCMOFs are rationally fabricated by growing ZIF-90 on mesoporous silica-coated upconversion nanoparticles(UCNPs),in which the ZIF-90 layer attenuates the upconversion luminescence(UCL) and the rigid frameworks increase the s...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号