首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We propose an electrochemical sensor based on applying two successive thin layers from a mixture of multiwalled carbon nanotubes‐ionic liquid crystal and crown ether at glassy carbon electrode surface (GC/(CNTs‐ILC)/Crown). The sensor was used for sensitive determination of neurotransmitters based on effective synergism between its components. The compact conducting surface of (CNTs ‐ ILC) with large surface area allowed the assembling of stable host‐guest inclusion complexes between crown ethers and neurotransmitters. The GC/(CNTs‐ILC)/Crown exhibited excellent electro‐catalytic activity toward the determination of serotonin (ST) in a wide linear dynamic range: 0.005 μmol L?1 to 100 μmol L?1. In the concentration range 0.005 μmol L?1 to 1 μmol L?1, the detection limit is 2.03×10?10 mol L?1 and quantification limit is 6.78×10?10 mol L?1 with correlation coefficient 0.999. The sensor was successfully applied for ST detection in human serum samples with satisfied recovery results. The sensor showed excellent analytical performance for the determination of ST in terms of low detection limit, good sensitivity and reproducibility. Furthermore excellent anti‐interference ability and simultaneous determination of ST in presence of other compounds as ascorbic acid, dopamine and antidepressant drug were achieved.  相似文献   

2.
The purpose of this paper is to develop an electroanalytical method based on square‐wave voltammetry (SWV) for the determination of the solvent blue 14 (SB‐14) in fuel samples. The electrochemical reduction of SB‐14 at glassy carbon electrode in a mixture of Britton‐Robinson buffer with N,N‐dimethylformamide (1 : 1, v/v) presented a well‐defined peak at?0.40 V vs. Ag/AgCl. All parameters of the SWV technique were optimized and the electroanalytical method presented a linear response from 1.0×10?6 to 6.0×10?6 mol L?1 (r=0.998) with a detection limit of 2.90×10?7 mol L?1. The developed method was successfully utilized in the quantification of the dye SB‐14 in kerosene and alcohol samples with average recovery from 93.00 to 98.10%.  相似文献   

3.
In this paper, gold microelectrode array (Au‐MEA) were employed to determination of ethambutol in aqueous medium. Au‐MEA was constructed with an electronic microchip integrated circuit. The standard curve (analytical curve) was constructed for a single microelectrode (ME) in a concentration range of 5.0×10?5 to 2.0×10?3 mol L?1, allowing estimation of both the limit of detection (LOD) (4.73×10?5 mol L?1) and the limit of quantification (LOQ) (1.57×10?4 mol L?1) for ethambutol. When the MEA was utilized, the LOD and LOQ were 1.55×10?7 and 5.18×10?7 mol L?1, respectively. Our results indicated that Au‐MEA can be utilized as amperometric sensors for ethambutol determination in aqueous media.  相似文献   

4.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

5.
A multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (MWNT-GCE) was used to study the electrochemical behaviour of1-hydroxypyrene (1-OHP) and applied to its determination. The results showed that the modified electrode had a strong adsorptive ability to 1-OHP and enhances its electrochemical signal. By square wave voltammetry, the linear relationship of 1-OHP was 6?×?10?9???8?×?10?7?mol?L?1 with a linear correlation coefficient of 0.996, and the detection limit was 1?×?10?10?mol?L?1. Compared with other published methods, this newly proposed method possesses many advantages such as very low detection limit, fast response, low cost and simplicity. And this method was applied successfully in the determination of 1‐OHP in real human urine samples.  相似文献   

6.
This paper describes a rapid and sensitive method for determination of the hair dye Basic Blue 41 in wastewater samples using screen‐printed carbon electrodes modified with graphene (SPCE/Gr). The method is based on the reversible reduction of azo groups of the dye at potential of ?0.23 V/?0.26 V, where both the anodic and cathodic currents increased 1,300 % when compared to screen‐printed carbon (SPCE) and glassy carbon electrodes (GCE). The optimization of a square wave voltammetric method was performed by means of 23 factorial design, Doehlert matrix and multi‐response assays, and the best parameters were: frequency (54.8 Hz), step potential (6 mV), pulse amplitude (43.7 mV) and pH 4.5. The analytical curve was constructed from 3.00×10?8 to 2.01×10?6 mol L?1, with detection and quantification limits of 5.00×10?9 and 1.70×10?8 mol L?1, respectively. The repeatability of the method evaluated for 10 consecutive measurements at concentrations of 1.70×10?7 mol L?1 and 1.70×10?6 mol L?1, showed relative standard deviation of 3.56 and 0.57 %, respectively. The sensor based in SPCE/Gr was successfully applied in wastewater samples collected from a drinking water treatment plant and validated by comparison with HPLC‐DAD method with good accuracy.  相似文献   

7.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

8.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

9.
The present work reports for the first time the determination of paraquat (PQ2+) by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using a carbon paste electrode modified (CPME) with biochar obtained from castor oil cake at different temperatures (200–600 °C). The best voltammetric response was verified using biochar yielded at 400 °C (CPME‐BC400). Linear dynamic range (LDR) for PQ2+ concentrations between 3.0×10?8 and 1.0×10?6 mol L?1 and a limit of detection (LOD) of 7.5×10?9 mol L?1 were verified. The method was successfully applied for PQ2+ quantification in spiked samples of natural water and coconut water.  相似文献   

10.
The paper describes the first electrochemical method (differential pulse adsorptive stripping voltammetry, DPAdSV) using a screen‐printed sensor with a carbon/carbon nanofibers working electrode (SPCE/CNFs) for the direct determination of low (real) concentrations of paracetamol (PA) in environmental water samples. By applying this sensor together with DPAdSV, two linear PA concentration ranges from 2.0×10?9 to 5.0×10?8 mol L?1 (r=0.9991) and 1.0×10?7–2.0×10?6 mol L?1 ( r=0.9994) were obtained. For the accumulation time of 90 s, the limit of detection was 5.4×10?10 mol L?1. Moreover, the SPCE/CNFs sensor and the DPADSV procedure for PA determination are potentially applicable in field analysis. The process of PA adsorption at the SPCE/CNFs surface was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and theoretical studies. In the theoretical study of the interaction of CNF and PA, the first species was modelled by graphene‐like clusters containing up to 37 rings. It was found that the preferable orientation of PA is parallel to the carbon surface with the binding energy of about ?68 kJ/mol calculated by symmetry‐adapted perturbation theory (SAPT). Both the selectivity and the accuracy of the developed sensor for real sample analysis were also investigated using Polish river and sea samples.  相似文献   

11.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

12.
《Electroanalysis》2004,16(8):644-649
A simple indirect method using aluminum chelating drugs as electroactive complexation ligands for the voltammetric determination of aluminum in environmental and biological samples on glassy carbon working electrode is studied. In the range of pH 8–9, desferrioxamine (DFO), 1,2‐dimethy‐3‐hydroxypyrid‐4‐one (Hdmp), 3‐hydroxy‐2‐methyl‐4H‐pyran‐4‐one (Hma) and 2,3‐dihydroxypyridine (DHP) yielded good anodic peaks. It was demonstrated that the decrease of the anodic peak current of the drugs was linear with the increase of aluminum concentration. Among them, Hdmp was found the best complexible ligand and chosen for the voltammetric determination of aluminum with EDTA as chelant, which was used for masking most of the interferences. Under the optimum experimental conditions, the linear range for determination of Al by Hdmp was 5×10?7–3×10?5 mol L?1 Al(III), the detection limit was 2×10?7 mol L?1, and the relative standard deviation for 3×10?6 mol L?1 Al(III) was 2.6% (n=7). The proposed method was applied to the determination of Al in real water samples and biological samples. The Al concentration in serum samples can be measured directly without time‐consuming digestion pretreatment.  相似文献   

13.
A novel and effective potentiometric sensor for the rapid determination of Cd2+ based on carbon paste electrode consisting of the room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate, multiwalled carbon nanotubes, silica nanoparticles and ionophore was constructed. The prepared composite has a low potential drift, high selectivity and fast response time, which leads to a more stable potential signal. A linear dynamic range of 4.50×10?9–1.00×10?1 mol L?1 with a detection limit of 2.00×10?9 mol L?1 was obtained. The modified electrode was successfully applied to the accurate determination of trace amounts of Cd2+ in environmental and biological samples.  相似文献   

14.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

15.
This work presents the analytical method development for iron and copper determination in ethanol fuel. This method was developed using stripping voltammetry with a glassy carbon electrode modified with Nafion/Carbon‐nanotubes. With linear sweep stripping voltammetry was achieved a limit of detection of 7.1×10?7 mol L?1 for Fe3+ and 5.1×10?8 mol L?1 for Cu2+. The amperometric sensitivities were 2.0×106 µA mol?1 L for Fe3+ and 2.8×107 µA mol?1 L for Cu2+. The recovery study showed that the method has good accuracy and repeatability, with recovery of 108 and 103 % for Fe3+ and Cu2+ respectively.  相似文献   

16.
Acyclovir is an antiviral effective drug active compound. A glassy carbon electrode (GCE) was modified with an electropolymerized film of p‐aminobenzene sulfonic acid (p‐ABSA) in phosphate buffer solution (PBS). The polymer film‐modified electrode was used to electrochemically detect acyclovir. Polymer film showed excellent electrocatalytic activity for the oxidation of acyclovir. The anodic peak potential value of the acyclovir at the poly(p‐ABSA) modified glassy carbon electrode was 950 mV obtained by DPV. A linear calibration curve for DPV analysis was constructed in the acyclovir concentration range 2×10?7–9×10?6 mol L?1. Limit of detection (LOD) and limit of quantification (LOQ) were obtained as 5.57×10?8 and 1.85×10?7 mol L?1 respectively. The proposed method exhibits good recovery and reproducibility.  相似文献   

17.
《Electroanalysis》2004,16(4):311-318
A rapid multiresidue method has been developed for the analysis of eight pesticides (triazines, triazinones and ureas) in environmental waters. A simple end‐column electrochemical detector was used in combination with an available commercial capillary electrophoresis instrument with UV detection. The determination of these pesticides using micellar electrokinetic capillary chromatography (MEKC) with dual electrochemical and UV detection is the first time reported. In both detection systems, a linear range was obtained for the eight pesticides, concentrations lower than 5.0×10?5 mol L?1, in 0.020 mol L?1 boric acid at pH 8.3 and containing 0.025 mol L?1 of sodium dodecylsulfate, to obtain selectivity in the additional separation by micellar distribution process. Under these conditions a lower detection limit than 2.0×10?6 mol L?1 (0.15 pmol of pesticide) was achieved for the most of them. The eight pesticides are resolved in less than 14 min.  相似文献   

18.
《Electroanalysis》2003,15(22):1751-1755
A sensitive, selective and economic stripping voltammetry is described for the determination of trace amounts of zirconium at a morin‐modified carbon paste electrode (morin‐MCPE). Zirconium(IV) can be preconcentrated on the surface of the morin‐MCPE due to forming the Zr(IV)–morin complex. The complex produces two second‐order derivative anodic peaks at 0.69 V (vs. SCE) and 0.75 V when linear‐scanning from 0.0 to 1.0 V. The optimum analytical conditions are: 2.2 mol L?1 HCl, 0.0 V accummulation potential, 90 s accummulation time, 250 mV s?1 scan rate. A linear relationships between the peak currents at 0.75 V and the Zr(IV) concentration are in the range of 2.0×10?8 to 3.0×10?6 mol L?1. The detection limit is 1.0×10?8 mol L?1 (S/N=3) for 120 s accumulation. The RSD for determination of 4.0×10?7 mol L?1 Zr(IV) is 4.8% (n=8). The proposed method has been applied to determine zirconium in ore samples, unnecessarily extracted.  相似文献   

19.
《Electroanalysis》2006,18(8):773-778
A sensitive and selective method for the determination of Pb(II) with a zirconium phosphated silica gel (SiZrPH) modified carbon paste electrode has been developed. The measurements were carried out in three steps including an open circuit accumulation following by electrolysis of accumulated Pb(II) at the modified carbon paste electrode and differential pulse voltammetric determination. The analytical performance was evaluated with respect to the carbon paste composition, pH of solution at the accumulation step, pH and concentration of supporting electrolyte, electrolysis potential, accumulation time and electrolysis time. Two linear calibration graphs were obtained in the concentration ranges 2.5×10?9 mol L?1–5.0×10?8 mol L?1 and 5.0×10?8 mol L?1–5.0×10?6 mol L?1 with an accumulation time of 120 s. The detection limit was found to be 3.5×10?10 mol L?1. The effects of potential interfering ions were studied, and it was found that the proposed procedure is free from interferences of common interfering ions such as tin, thallium and etc. The developed method was applied to Pb(II) determination in a wastewater sample.  相似文献   

20.
Silicon dioxide nanoparticles modified carbon paste electrode was fabricated and used for electrochemical investigation of tryptophan. Compared with the unmodified electrode, the peak current significantly increased. Experimental conditions for tryptophan determination were optimized. Linear relationship between the peak current and tryptophan concentration was obtained in the range of 1.0 × 10?7?5.0 × 10?6 mol L?1 and 5.0 × 10?6?5.0 × 10?5 mol L?1 with an estimated detection limit of 3.6 × 10?8 mol L?1 (S/N = 3). Tryptophan in pharmaceutical and human serum samples were successfully determined by the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号