首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

2.
Herein, we report a two‐step process forming arene C?O bonds in excellent site‐selectivity at a late‐stage. The C?O bond formation is achieved by selective introduction of a thianthrenium group, which is then converted into C?O bonds using photoredox chemistry. Electron‐rich, ‐poor and ‐neutral arenes as well as complex drug‐like small molecules are successfully transformed into both phenols and various ethers. The sequence differs conceptually from all previous arene oxygenation reactions in that oxygen functionality can be incorporated into complex small molecules at a late stage site‐selectively, which has not been shown via aryl halides.  相似文献   

3.
An alkoxyl radical guided strategy for site‐selective functionalization of unactivated methylene and methine C?H bonds enabled by an FeII‐catalyzed redox process is described. The mild, expeditious, and modular protocol allows efficient remote aliphatic fluorination, chlorination, amination, and alkynylation of structurally and electronically varied primary, secondary, and tertiary hydroperoxides with excellent functional‐group tolerance. The application for one‐pot 1,4‐hydroxyl functionalization of non‐oxygenated alkane substrates initiated by aerobic C?H oxygenation is also demonstrated.  相似文献   

4.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

5.
Selective bromination of γ‐methylene C(sp3)−H bonds of aliphatic amides and δ‐methylene C(sp3)−H bonds of nosyl‐protected alkyl amines are developed using NBS as the brominating reagent and catalytic amount of CuII/phenanthroline complexes as the catalyst. Aryl and benzylic C−H bonds at other locations remain intact during this directed radical abstraction reaction.  相似文献   

6.
Intramolecular hydrogen atom transfer is an established approach for the site‐specific functionalization of unactivated, aliphatic C−H bonds. Transformations using this strategy typically require unstable intermediates formed using strong oxidants and have mainly targeted C−H halogenations or intramolecular aminations. Herein, we report a site‐specific C−H functionalization that significantly increases the synthetic scope and convergency of reactions proceeding via intramolecular hydrogen atom transfer. Stable, isolable N‐dithiocarbamates are used as precursors to amidyl radicals formed via either light or radical initiation to efficiently deliver highly versatile alkyl dithiocarbamates across a wide range of complex structures.  相似文献   

7.
Methods that enable the direct C?H alkoxylation of complex organic molecules are significantly underdeveloped, particularly in comparison to analogous strategies for C?N and C?C bond formation. In particular, almost all methods for the incorporation of alcohols by C?H oxidation require the use of the alcohol component as a solvent or co‐solvent. This condition limits the practical scope of these reactions to simple, inexpensive alcohols. Reported here is a photocatalytic protocol for the functionalization of benzylic C?H bonds with a wide range of oxygen nucleophiles. This strategy merges the photoredox activation of arenes with copper(II)‐mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C?O bonds with high site selectivity, chemoselectivity, and functional‐group tolerance using only two equivalents of the alcohol coupling partner. This method enables the late‐stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential applications in synthesis and medicinal chemistry.  相似文献   

8.
A novel and site selective C?H functionalization of unsubstituted sulfonamides has been developed for the synthesis of ortho aryl sulfonamides. The reaction involves highly regioselective ortho mono arylation of weakly coordinating SO2NH2 directing group by means of aryl iodides. Palladium acetate in the presence of silver(I) oxide is found to be the most effective catalytic system.  相似文献   

9.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

10.
The functionalization of C?H bonds with non‐precious metal catalysts is an important research area for the development of efficient and sustainable processes. Herein, we describe the development of iron porphyrin catalyzed reactions of diazoacetonitrile with N‐heterocycles yielding important precursors of tryptamines, along with experimental mechanistic studies and proof‐of‐concept studies of an enzymatic process with YfeX enzyme. By using readily available FeTPPCl, we achieved the highly efficient C?H functionalization of indole and indazole heterocycles. These transformations feature mild reaction conditions, excellent yields with broad functional group tolerance, can be conducted on gram scale, and thus provide a unique streamlined access to tryptamines.  相似文献   

11.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

12.
Direct amination of C(sp3)?H bonds is of broad interest in the realm of C?H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3)?H/N?H coupling that exhibits good reactivity with both sp2 and sp3 N?H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light‐induced cleavage of intermediate N?I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional‐group compatibility of electrochemical C?H amination, for example, tolerating electron‐rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.  相似文献   

13.
14.
Iridium catalysts containing dative nitrogen ligands are highly active for the borylation and silylation of C−H bonds, but chiral analogs of these catalysts for enantioselective silylation reactions have not been developed. We report a new chiral pyridinyloxazoline ligand for enantioselective, intramolecular silylation of symmetrical diarylmethoxy diethylsilanes. Regioselective and enantioselective silylation of unsymmetrical substrates was also achieved in the presence of this newly developed system. Preliminary mechanistic studies imply that C−H bond cleavage is irreversible, but not the rate‐determining step.  相似文献   

15.
An efficient approach for organoselenium‐catalyzed regioselective C−H pyridination of 1,3‐dienes to form pyridinium salts has been developed. This method was also successfully applied to direct C−H pyridination of alkenes. Fluoropyridinium reagents, or initially loaded pyridine derivatives, acted as pyridine sources in the pyridination reactions. The obtained pyridinium salts could be further converted under different conditions. This work is the first example of catalytic C‐2 direct C−H functionalization of 1,3‐dienes and the first case of organoselenium‐catalyzed C−H pyridination.  相似文献   

16.
Iridium catalysts containing dative nitrogen ligands are highly active for the borylation and silylation of C−H bonds, but chiral analogs of these catalysts for enantioselective silylation reactions have not been developed. We report a new chiral pyridinyloxazoline ligand for enantioselective, intramolecular silylation of symmetrical diarylmethoxy diethylsilanes. Regioselective and enantioselective silylation of unsymmetrical substrates was also achieved in the presence of this newly developed system. Preliminary mechanistic studies imply that C−H bond cleavage is irreversible, but not the rate‐determining step.  相似文献   

17.
Functionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal‐catalyzed carbene transfer has provided an attractive route to afford C3‐functionalized indoles, these protocols are viable only in the presence of N‐protected indoles, owing to competition from the more facile N−H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C−H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α‐diazoacetate to give the corresponding C3‐functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti‐inflammatory drug indomethacin.  相似文献   

18.
Transition‐metal‐catalyzed C?H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late‐stage peptide macrocyclization methods by palladium‐catalyzed site‐selective C(sp2)?H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp–alkene crosslinks.  相似文献   

19.
A mild, oxidant‐free, and selective Cp*CoIII‐catalyzed amidation of thioamides with robust dioxazolone amidating agents via C(sp3)−H bond activation to generate the desired amidated products is reported. The method is efficient and allows for the C−H amidation of a wide range of functionalized thioamides with aryl‐, heteroaryl‐, and alkyl‐substituted dioxazolones under the Cp*CoIII‐catalyzed conditions. The observed regioselectivity towards primary C(sp3)−H activation is supported by computational studies and the cyclometalation is proposed to proceed by means of an external carboxylate‐assisted concerted metalation/deprotonation mechanism. The reported method is a rare example of the use of a directing group other than the commonly used pyridine and quinolone classes for Cp*CoIII‐catalyzed C(sp3)−H functionalization and the first to exploit thioamides.  相似文献   

20.
A Cu‐mediated ortho‐C?H radiofluorination of aromatic carboxylic acids that are protected as 8‐aminoquinoline benzamides is described. The method uses K18F and is compatible with a wide range of functional groups. The reaction is showcased in the high specific activity automated synthesis of the RARβ2 agonist [18F]AC261066.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号