首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steric effects of substituents on five‐membered rings are less pronounced than those on six‐membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five‐membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C?H bonds, have been poor in many cases. We report that the silylation of five‐membered‐ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5‐cyclooctadiene) and a phenanthroline ligand or a new pyridyl‐imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C?H bonds of these rings under conditions that the borylation of C?H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross‐coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.  相似文献   

2.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

3.
A rhodium(III)‐catalyzed cross‐coupling of benzyl thioethers and aryl carboxylic acids through the two directing groups is reported. Useful structures with diverse substituents were efficiently synthesized in one step with the cleavage of four bonds (C? H, C? S, O? H) and the formation of two bonds (C? C, C? O). The formed structure is the privileged core in natural products and bioactive molecules. This work highlights the power of using two different directing groups to enhance the selectivity of a double C? H activation, the first of such examples in cross‐oxidative coupling.  相似文献   

4.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

5.
Reported herein is an iridium‐catalyzed, regioselective silylation of the aromatic C? H bonds of benzylamines and the benzylic C? H bonds of 2,N‐dialkylanilines. In this process, (hydrido)silyl amines, generated in situ by dehydrogenative coupling of benzylamine or aniline with diethylsilane, undergo selective silylation at the C? H bond γ to the amino group. The products of this silylation are suitable for subsequent oxidation, halogenation, and cross‐coupling reactions to deliver benzylamine and arylamine derivatives.  相似文献   

6.
The synthesis of isoquinolines by site‐selective C? H activation of O‐acyl oximes with a Cp*CoIII catalyst is described. In the presence of this catalyst, the C? H activation of various unsymmetrically substituted O‐acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*CoIII system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*RhIII catalysts led to low selectivities and/or yields when unsymmetrical O‐acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C? H activation step under Cp*CoIII and Cp*RhIII catalysis.  相似文献   

7.
A highly site‐selective, heteroatom‐guided, palladium‐catalyzed direct arylation of 4H‐chromenes is reported. The C?H functionalization is driven not only by the substituents and structure of the substrate but also by the coupling partner being used. The diastereoselective assembly of the core structure of Myristinin B has been achieved by using a dual C?H functionalization strategy for regioselective direct arylation.  相似文献   

8.
Herein, we report a two‐step process forming arene C?O bonds in excellent site‐selectivity at a late‐stage. The C?O bond formation is achieved by selective introduction of a thianthrenium group, which is then converted into C?O bonds using photoredox chemistry. Electron‐rich, ‐poor and ‐neutral arenes as well as complex drug‐like small molecules are successfully transformed into both phenols and various ethers. The sequence differs conceptually from all previous arene oxygenation reactions in that oxygen functionality can be incorporated into complex small molecules at a late stage site‐selectively, which has not been shown via aryl halides.  相似文献   

9.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

10.
A rhodium(III)‐catalyzed cross‐coupling of benzyl thioethers and aryl carboxylic acids through the two directing groups is reported. Useful structures with diverse substituents were efficiently synthesized in one step with the cleavage of four bonds (C H, C S, O H) and the formation of two bonds (C C, C O). The formed structure is the privileged core in natural products and bioactive molecules. This work highlights the power of using two different directing groups to enhance the selectivity of a double C H activation, the first of such examples in cross‐oxidative coupling.  相似文献   

11.
Herein, we report a regioselective alkenyl electrophile synthesis from unactivated olefins that is based on a direct and regioselective C?H thianthrenation reaction. The selectivity is proposed to arise from an unusual inverse‐electron‐demand hetero‐Diels–Alder reaction. The alkenyl sulfonium salts can serve as electrophiles in palladium‐ and ruthenium‐catalyzed cross‐coupling reactions to make alkenyl C?C, C?Cl, C?Br, and C?SCF3 bonds with stereoretention.  相似文献   

12.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

13.
Significant progress has been made in the past decade regarding the development of enantioselective C?H activation reactions by desymmetrization. However, the requirement for the presence of two chemically identical prochiral C?H bonds represents an inherent limitation in scope. Reported is the first example of kinetic resolution by a palladium(II)‐catalyzed enantioselective C?H activation and C?C bond formation, thus significantly expanding the scope of enantioselective C?H activation reactions.  相似文献   

14.
Methods that enable the direct C?H alkoxylation of complex organic molecules are significantly underdeveloped, particularly in comparison to analogous strategies for C?N and C?C bond formation. In particular, almost all methods for the incorporation of alcohols by C?H oxidation require the use of the alcohol component as a solvent or co‐solvent. This condition limits the practical scope of these reactions to simple, inexpensive alcohols. Reported here is a photocatalytic protocol for the functionalization of benzylic C?H bonds with a wide range of oxygen nucleophiles. This strategy merges the photoredox activation of arenes with copper(II)‐mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C?O bonds with high site selectivity, chemoselectivity, and functional‐group tolerance using only two equivalents of the alcohol coupling partner. This method enables the late‐stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential applications in synthesis and medicinal chemistry.  相似文献   

15.
C7?H‐functionalized indoles are ubiquitous structural units of biological and pharmaceutical compounds for numerous antiviral agents against SARS‐CoV or HIV‐1. Thus, achieving site‐selective functionalizations of the C7?H position of indoles, while discriminating among other bonds, is in high demand. Herein, we disclose site‐selective C7?H activations of indoles by ruthenium(II) biscarboxylate catalysis under mild conditions. Base‐assisted internal electrophilic‐type substitution C?H ruthenation by weak O‐coordination enabled the C7?H functionalization of indoles and offered a broad scope, including C?N and C?C bond formation. The versatile ruthenium‐catalyzed C7?H activations were characterized by gram‐scale syntheses and the traceless removal of the directing group, thus providing easy access to pharmaceutically relevant scaffolds. Detailed mechanistic studies through spectroscopic and spectrometric analyses shed light on the unique nature of the robust ruthenium catalysis for the functionalization of the C7?H position of indoles.  相似文献   

16.
An alkoxyl radical guided strategy for site‐selective functionalization of unactivated methylene and methine C?H bonds enabled by an FeII‐catalyzed redox process is described. The mild, expeditious, and modular protocol allows efficient remote aliphatic fluorination, chlorination, amination, and alkynylation of structurally and electronically varied primary, secondary, and tertiary hydroperoxides with excellent functional‐group tolerance. The application for one‐pot 1,4‐hydroxyl functionalization of non‐oxygenated alkane substrates initiated by aerobic C?H oxygenation is also demonstrated.  相似文献   

17.
This study describes the iridium‐catalyzed intermolecular dehydrogenative silylation of C(sp2)?H bonds of polycyclic aromatic compounds without directing groups. The reaction produced various arylsilanes through both Si?H and C?H bond activation, with hydrogen as the sole byproduct. Reactivity was affected by the electronic nature of the aromatic compounds, and silylation of electron‐deficient and polycyclic aromatic compounds proceeded efficiently. Site‐selectivity was controlled predominantly by steric factors. Therefore, the current functionalization proceeded with opposite chemo‐ and site‐selectivity compared to that observed for general electrophilic functionalization of aromatic compounds.  相似文献   

18.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

19.
Diversification of the βcarboline skeleton has been demonstrated to assemble a βcarboline library starting from the tetrahydro‐βcarboline framework. This strategy affords feasible access to heteroaryl‐, aryl‐, alkenyl‐, or alkynyl‐substituted β‐carbolines at the C1, C3, or C8 position through three categorically different types of transition‐metal‐catalyzed C?C bond‐forming reactions, in the presence of multiple potentially reactive positions. These site‐selective functionalizations include; 1) the Cu‐catalyzed C1/C3‐selective decarboxylative C?C and C?Csp coupling of hexahydro‐βcarboline‐3‐carboxylic acid with a C?H bond of a heteroarene or terminal alkyne; 2) the chelation‐assisted Pd‐catalyzed C1/C8‐selective C?H arylation of hexahydro‐β‐carboline with aryl boron reagents; and 3) the chelation‐assisted Pd‐catalyzed C1/C3‐selective oxidative C?H/C?H cross‐coupling of βcarboline‐N‐oxide with arenes, heteroarenes, or alkenes. The saturated structural feature of the hexahydro‐βcarboline framework can increase reactivity and control site selectivity. The robustness of these approaches has been demonstrated through the synthesis of hyrtioerectine analogues and perlolyrine. We believe that these strategies could provide inspiration for late‐stage diversifications of bioactive core scaffolds.  相似文献   

20.
Herein, we developed a Ru(II)(BPGA) complex that could be used to catalyze chemo‐ and site‐selective C?H oxidation. The described ruthenium complex was designed by replacing one pyridyl group on tris(2‐pyridylmethyl)amine with an electron‐donating amide ligand that was critical for promoting this type of reaction. More importantly, higher reactivities and better chemo‐, and site‐selectivities were observed for reactions using the cis‐ruthenium complex rather than the trans‐one. This reaction could be used to convert sterically less hindered methyne and/or methylene C?H bonds of a various organic substrates, including natural products, into valuable alcohol or ketone products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号