首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Herein are described the synthesis, photophysical properties and applications of a series of luminescent cyclometalated AuIII complexes having an auxiliary aryl ligand. These complexes show photoluminescence with emission quantum yields of up to 0.79 in solution and 0.84 in thin films (4 wt % in PMMA) at room temperature, both of which are the highest reported values among AuIII complexes. Thermally activated delayed fluorescence (TADF) is the emission origin for some of these complexes. Solution‐processed OLEDs made with these complexes showed sky‐blue to green electroluminescence with external quantum efficiencies (EQEs) of up to 23.8 %, current efficiencies of up to 70.4 cd A−1, and roll‐off of down to 1 %, highlighting the bright prospect of AuIII‐TADF emitters in OLEDs.  相似文献   

2.
Structurally robust tetradentate gold(III)‐emitters have potent material applications but are rare and unprecedented for those displaying thermally activated delayed fluorescence (TADF). Herein, a novel synthetic route leading to the preparation of highly emissive, charge‐neutral tetradentate [C^C^N^C] gold(III) complexes with 5‐5‐6‐membered chelate rings has been developed through microwave‐assisted C?H bond activation. These complexes show high thermal stability and with emission origin (3IL, 3ILCT, and TADF) tuned by varying the substituents of the C^C^N^C ligand. With phenoxazine/diphenylamine substituent, we prepared the first tetradentate gold(III) complexes that are TADF emitters with emission quantum yields of up to 94 % and emission lifetimes of down to 0.62 μs in deoxygenated toluene. These tetradentate AuIII TADF emitters showed good performance in vacuum‐deposited OLEDs with maximum EQEs of up to 25 % and LT95 of up to 5280 h at 100 cd m?2.  相似文献   

3.
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve high efficiency in doped and nondoped organic light‐emitting diodes (OLEDs) are rarely reported. Reported here is a strategy using a tri‐spiral donor for such versatile blue TADF emitters. Impressively, by simply extending the nonconjugated fragment and molecular length, aggregation‐caused emission quenching (ACQ) can be greatly alleviated to achieve as high as a 90 % horizontal orientation dipole ratio and external quantum efficiencies (EQEs) of up to 33.3 % in doped and 20.0 % in nondoped sky‐blue TADF‐OLEDs. More fascinatingly, a high‐efficiency purely organic white OLED with an outstanding EQE of up to 22.8 % was also achieved by employing TspiroS‐TRZ as a blue emitter and an assistant host. This compound is the first blue TADF emitter that can simultaneously achieve high electroluminescence (EL) efficiency in doped, nondoped sky‐blue, and white TADF‐OLEDs.  相似文献   

4.
Structurally robust tetradentate gold(III)-emitters have potent material applications but are rare and unprecedented for those displaying thermally activated delayed fluorescence (TADF). Herein, a novel synthetic route leading to the preparation of highly emissive, charge-neutral tetradentate [C^C^N^C] gold(III) complexes with 5-5-6-membered chelate rings has been developed through microwave-assisted C−H bond activation. These complexes show high thermal stability and with emission origin (3IL, 3ILCT, and TADF) tuned by varying the substituents of the C^C^N^C ligand. With phenoxazine/diphenylamine substituent, we prepared the first tetradentate gold(III) complexes that are TADF emitters with emission quantum yields of up to 94 % and emission lifetimes of down to 0.62 μs in deoxygenated toluene. These tetradentate AuIII TADF emitters showed good performance in vacuum-deposited OLEDs with maximum EQEs of up to 25 % and LT95 of up to 5280 h at 100 cd m−2.  相似文献   

5.
The development of efficient metal‐free organic emitters with thermally activated delayed fluorescence (TADF) properties for deep‐blue emission is still challenging. A new family of deep‐blue TADF emitters based on a donor–acceptor architecture has been developed. The electronic interaction between donor and acceptor plays a key role in the TADF mechanism. Deep‐blue OLEDs fabricated with these TADF emitters achieved high external quantum efficiencies over 19.2 % with CIE coordinates of (0.148, 0.098).  相似文献   

6.
《化学:亚洲杂志》2017,12(6):648-654
Herein, 9,10‐dihydro‐9,9‐dimethylacridine (Ac) or phenoxazine (PXZ)‐substituted isonicotinonitrile (INN) derivatives, denoted as 2AcINN , 26AcINN , and 26PXZINN , were developed as a series of thermally activated delayed fluorescence (TADF) emitters. These emitters showed reasonably high photoluminescence quantum yields of 71–79 % in the host films and high power efficiency organic light‐emitting diodes (OLEDs). Sky‐blue emitter 26AcINN exhibited a low turn‐on voltage of 2.9 V, a high external quantum efficiency (η ext) of 22 %, and a high power efficiency (η p) of 66 lm W−1 with Commission Internationale de l′Eclairage (CIE) chromaticity coordinates of (0.22, 0.45), whereas green emitter 26PXZINN exhibited a low turn‐on voltage of 2.2 V, a high η ext of 22 %, and a high η p of 99 lm W−1 with CIE chromaticity coordinates of (0.37, 0.58). These performances are among the best for TADF OLEDs to date.  相似文献   

7.
A new class of four‐coordinate donor‐acceptor fluoroboron‐containing thermally activated delayed fluorescence (TADF) compounds bearing a tridentate 2,2′‐(pyridine‐2,6‐diyl)diphenolate (dppy) ligand has been successfully designed and synthesized. Upon varying the donor moieties from carbazole to 10H‐spiro[acridine‐9,9′‐fluorene] to 9,9‐dimethyl‐9,10‐dihydroacridine, these boron derivatives exhibit a wide range of emission colors spanning from blue to yellow with a large spectral shift of 2746 cm?1, with high PLQYs of up to 96 % in the doped thin film. Notably, vacuum‐deposited organic light‐emitting devices (OLEDs) made with these boron compounds demonstrate high performances with the best current efficiencies of 55.7 cd A?1, power efficiencies of 58.4 lm W?1 and external quantum efficiencies of 18.0 %. More importantly, long operational stabilities of the green‐emitting OLEDs based on 2 with half‐lifetimes of up to 12 733 hours at an initial luminance of 100 cd m?2 have been realized. This work represents for the first time the design and synthesis of tridentate dppy‐chelating four‐coordinate boron TADF compounds for long operational stabilities, suggesting great promises for the development of stable boron‐containing TADF emitters.  相似文献   

8.
Despite the success of thermally activated delayed fluorescent (TADF) materials in steering the next generation of organic light‐emitting diodes (OLEDs), effective near infrared (NIR) TADF emitters are still very rare. Here, we present a simple and extremely high electron‐deficient compound, 5,6‐dicyano[2,1,3]benzothiadiazole (CNBz), as a strong electron‐accepting unit to develop a sufficiently strong donor‐acceptor (D?A) interaction for NIR emission. End‐capping with the electron‐donating triphenylamine (TPA) unit created an effective D?A?D type system, giving rise to an efficient NIR TADF emissive molecule (λem=750 nm) with a very small ΔEST of 0.06 eV. The electroluminescent device using this NIR TADF emitter exhibited an excellent performance with a high maximum radiance of 10020 mW Sr?1 m?2, a maximum EQE of 6.57% and a peak wavelength of 712 nm.  相似文献   

9.
Two efficient thermally activated delayed fluorescent (TADF) emitters were developed by utilizing CN-modified imidazopyridine as an acceptor unit. The CN-modified imidazopyridine acceptor was combined with either an acridine donor or a phenoxazine donor through a phenyl linker to produce two TADF emitters, Ac-CNImPy and PXZ-CNImPy. The acridine-based Ac-CNImPy emitter exhibited sky-blue emission with a CIE coordinate of (0.18, 0.38), whereas the phenoxazine-donor-based PXZ-CNImPy showed greenish-yellow emission with a CIE coordinate of (0.32, 0.58). A high photoluminescence quantum yield of 80 % was observed for the PXZ-CNImPy emitter compared with 40 % for the Ac-CNImPy emitter. Organic light-emitting diodes based on the PXZ-CNImPy emitter demonstrated high external quantum efficiency of 17.0 %. Hence, the CN-modified imidazopyridine unit can be considered as a useful electron acceptor for the future design of highly efficient TADF emitters.  相似文献   

10.
A family of organic emitters with a donor–σ–acceptor (D‐σ‐A) motif is presented. Owing to the weakly coupled D‐σ‐A intramolecular charge‐transfer state, a transition from the localized excited triplet state (3LE) and charge‐transfer triplet state (3CT) to the charge‐transfer singlet state (1CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200–400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D‐σ‐A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes.  相似文献   

11.
Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs.  相似文献   

12.
Aggregation‐induced emission (AIE) provides an efficient strategy to synthesize highly luminescent metal nanoclusters (NCs), however, rational control of emission energy and intensity of metal NCs is still challenging. This communication reveals the impact of surface AuI‐thiolate motifs on the AIE properties of Au NCs, by employing a series of water‐soluble glutathione (GSH)‐coordinated Au complexes and NCs as a model ([Au10SR10], [Au15SR13], [Au18SR14], and [Au25SR18]?, SR=thiolate ligand). Spectroscopic investigations show that the emission wavelength of Au NCs is adjustable from visible to the near‐infrared II (NIR‐II) region by controlling the length of the AuI‐SR motifs on the NC surface. Decreasing the length of AuI‐SR motifs also changes the origin of cluster luminescence from AIE‐type phosphorescence to Au0‐core‐dictated fluorescence. This effect becomes more prominent when the degree of aggregation of Au NCs increases in solution.  相似文献   

13.
We demonstrate modular modifications of the widely employed emitter 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) by replacing one or both nitrile acceptors with oxadiazole groups via a tetrazole intermediate. This allows the introduction of various functional groups including halides, alkynes, alkenes, nitriles, esters, ethers and a protected amino acid while preserving the thermally activated delayed fluorescence (TADF) properties. The substituents control the emission maximum of the corresponding emitters, ranging between 472–527 nm, and show high solid-state photoluminescence quantum yields up to 85 %. The TADF emission of two compounds, 4CzCNOXDtBu and 4CzdOXDtBu, a mono- and a bis-oxadiazole substituted 4CzIPN is characterized in detail by time- and temperature-dependent photoluminescence. Solution-processed OLEDs comprising 4CzCNOXDtBu and 4CzdOXDtBu show a significant blue-shift of the emission compared to the reference 4CzIPN, with external quantum efficiencies of 16 %, 5.9 % and 17 % at 100 cd m−2, respectively.  相似文献   

14.
A series of blue thermally activated delayed fluorescent (TADF) emitters of 1′′-(4,6-diphenyl-1,3,5-triazin-2-yl)-9,9′′-diphenyl-9H,9′′H-3,3′:9′,4′′-tercarbazole (TrzCz1) and 3′,6′-di-tert-butyl-1-(4,6-diphenyl-1,3,5-triazin-2-yl)-9-phenyl-9H-4,9′-bicarbazole (TrzCz2) were synthesized through a molecular design approach to decorate phenylcarbazole with a donor and an acceptor. The 1- and 4-positions of the phenylcarbazole core were modified with a diphenyltriazine acceptor and a bicarbazole or tert-butylcarbazole donor, respectively, through a synthetic strategy to introduce Br at the 1-position and F at the 4-position. The TrzCz1 and TrzCz2 emitters showed maximum photoluminescence emission bands at λ=443 and 433 nm, which were blueshifted relative to those of the corresponding TADF emitters with the same donor and acceptor, respectively. In the device application, the TrzCz1 emitter showed a maximum external quantum efficiency of 22.4 %, with a color coordinate of (0.16, 0.21), and the TrzCz2 emitter showed a maximum external quantum efficiency of 9.9 %, with a color coordinate of (0.14, 0.09). This work proved that the design strategy of decorating phenylcarbazole with a donor and an acceptor is effective at blueshifting the emission of TADF emitters.  相似文献   

15.
We propose the novel σ–π conjugated polymer poly(biphenyl germanium) grafted with two electron‐donating acridan moieties on the Ge atom for use as the host material in a polymer light‐emitting diode (PLED) with the sky‐blue‐emitting thermally activated delayed fluorescence (TADF) material DMAC‐TRZ as the guest. Its high triplet energy (ET) of 2.86 eV is significantly higher than those of conventional π–π conjugated polymers (ET=2.65 eV as the limit) and this guest emitter (ET=2.77 eV). The TADF emitter emits bluer emission than in other host materials owing to the low orientation polarizability of the germanium‐based polymer host. The Ge atom also provides an external heavy‐atom effect, which increases the rate of reverse intersystem crossing in this TADF guest, so that more triplet excitons are harvested for light emission. The sky‐blue TADF electroluminescence with this host/guest pair gave a record‐high external quantum efficiency of 24.1 % at maximum and 22.8 % at 500 cd m?2.  相似文献   

16.
A new family of thermally activated delayed fluorescence (TADF) emitters based on U‐shaped D‐A‐D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet‐triplet energy splitting (ΔEST) ranging from 0.02 to 0.20 eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16 % external quantum efficiency (EQE).  相似文献   

17.
Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high‐efficient red organic light‐emitting diodes (OLEDs) and non‐doped deep red/near‐infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ‐PXZ and mDPBPZ‐PXZ, with twisted donor–acceptor structures were designed and synthesized to study molecular design strategies of high‐efficiency red TADF emitters. BPPZ‐PXZ employs the strictest molecular restrictions to suppress energy loss and realizes red emission with a photoluminescence quantum yield (ΦPL) of 100±0.8 % and external quantum efficiency (EQE) of 25.2 % in a doped OLED. Its non‐doped OLED has an EQE of 2.5 % owing to unavoidable intermolecular π–π interactions. mDPBPZ‐PXZ releases two pyridine substituents from its fused acceptor moiety. Although mDPBPZ‐PXZ realizes a lower EQE of 21.7 % in the doped OLED, its non‐doped device shows a superior EQE of 5.2 % with a deep red/NIR emission at peak of 680 nm.  相似文献   

18.
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve narrowband emission and high efficiency in nondoped organic light-emitting diodes (OLEDs) remain a big challenge. Herein, we successfully design and synthesize two blue TADF emitters by directly incorporating carbazole fragments into an oxygen-bridged triarylboron acceptor. Depending on the linking mode, the two emitters show significantly different photophysical properties. Benefitting from the bulky steric hindrance between the acceptor and terminal pendants, the blue emitter TDBA-Cz exhibited a high photoluminescence quantum yield (PLQY) of 88% in neat films and narrowband emission. The corresponding non-doped blue device exhibited a maximum external quantum efficiency (EQE) of 21.4%, with a full width at half maximum (FWHM) of only 45 nm. This compound is the first blue TADF emitter that can concurrently achieve narrow bandwidth and high electroluminescence (EL) efficiency in nondoped blue TADF-OLEDs.

A donor–acceptor TADF emitter showed narrowband high-efficiency blue emission by fine molecular modulation. The corresponding OLEDs exhibited a maximum EQE of 21.4% and a small FWHM of 45 nm, representing the most efficient nondoped blue TADF-OLEDs.  相似文献   

19.
Dual emitting cores for thermally activated delayed fluorescent (TADF) emitters were developed. Relative to the corresponding TADF emitter with a single emitting core the TADF emitter with a dual emitting core, 3,3′,5,5′‐tetra(carbazol‐9‐yl)‐[1,1′‐biphenyl]‐2,2′,6,6′‐tetracarbonitrile, showed enhanced light absorption accompanied by a high photoluminescence quantum yield. The quantum and power efficiencies of the TADF devices were enhanced by the dual emitting cores.  相似文献   

20.
Building blocks and heteroatom alignments are two determining factors in designing multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters. Carbazole-fused MR emitters, represented by CzBN derivatives, and the heteroatom alignments of ν-DABNA are two star series of MR-TADF emitters that show impressive performances from the aspects of building blocks and heteroatom alignments, respectively. Herein, a novel CzBN analog, Π-CzBN, featuring ν-DABNA heteroatom alignment is developed via facile one-shot lithium-free borylation. Π-CzBN exhibits superior photophysical properties with a photoluminescence quantum yield close to 100 % and narrowband sky blue emission with a full width at half maximum (FWHM) of 16 nm/85 meV. It also gives efficient TADF properties with a small singlet-triplet energy offset of 40 meV and a fast reverse intersystem crossing rate of 2.9×105 s−1. The optimized OLED using Π-CzBN as the emitter achieves an exceptional external quantum efficiency of 39.3 % with a low efficiency roll-off of 20 % at 1000 cd m−2 and a narrowband emission at 495 nm with FWHM of 21 nm/106 meV, making it one of the best reported devices based on MR emitters with comprehensive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号