首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Star‐shaped conjugated molecules, consisting of a benzene central unit symmetrically trisubstituted with either oxa‐ or thiadiazole bithiophene groups, were synthesized as promising molecules and building blocks for application in (opto)electronics and electrochromic devices. Their optical (Eg(opt)) as well as electrochemical (Eg(electro)) band gaps depended on the type of the side arm and the number of solubilizing alkyl substituents. Oxadiazole derivatives showed Eg(opt) slightly below 3 eV and by 0.2 eV larger than those determined for thiadiazole‐based compounds. The presence of alkyl substituents in the arms additionally lowered the band gap. The obtained compounds were efficient electroluminophores in guest/host‐type light‐emitting diodes. They also showed a strong tendency to self‐organize in monolayers deposited on graphite, as evidenced by scanning tunneling microscopy. The structural studies by X‐ray scattering revealed the formation of supramolecular columnar stacks in which the molecules were organized. Differences in macroscopic alignment in the specimen indicated variations in the self‐assembly mechanism between the molecules. The compounds as trifunctional monomers were electrochemically polymerized to yield the corresponding polymer network. As shown by UV/Vis‐NIR spectroelectrochemical studies, these networks exhibited reversible electrochromic behavior both in the oxidation and in the reduction modes.  相似文献   

2.
Molecular weights of seven poly(phenylene ethynylene)‐based water‐soluble conjugated polyelectrolytes (CPEs) obtained through Sonogashira coupling are determined by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). A standard sample preparation protocol is developed to characterize the seven CPEs using 2,5‐dihydroxybenzoic acid as the matrix (M) and AgTFA as the cationization reagent (CR). High‐quality MALDI mass spectra are obtained at volume mixing ratios (CPE/M/CR) of 5/5/1 for anionic polymers (P1–P4) and 5/50/1 for cationic polymers (P5–P7). Molecular weight, molecular weight distribution, and end‐group information are analyzed. The effects of molecular weight of CPEs on optical and quenching properties are also studied. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2537–2543  相似文献   

3.
The electron‐accepting ability of 6,6‐dicyanopentafulvenes (DCFs) can be varied extensively through substitution on the five‐membered ring. The reduction potentials for a set of 2,3,4,5‐tetraphenyl‐substituted DCFs, with varying substituents at the para‐position of the phenyl rings, strongly correlate with their Hammett σp‐parameters. By combining cyclic voltammetry with DFT calculations ((U)B3LYP/6‐311+G(d)), using the conductor‐like polarizable continuum model (CPCM) for implicit solvation, the absolute reduction potentials of a set of twenty DCFs were reproduced with a mean absolute deviation of 0.10 eV and a maximum deviation of 0.19 eV. Our experimentally investigated DCFs have reduction potentials within 3.67–4.41 eV, however, the computations reveal that DCFs with experimental reduction potentials as high as 5.3 eV could be achieved, higher than that of F4‐TCNQ (5.02 eV). Thus, the DCF core is a template that allows variation in the reduction potentials by about 1.6 eV.  相似文献   

4.
杨丽封继康  任爱民 《中国化学》2007,25(10):1491-1498
One of the drawbacks of the electroluminescence (EL) polymers is that they are usually much better at accepting and transporting holes than electrons due to their inherent richness of π-electrons. One approach improving electron injection and transport in conjugated polymers is to incorporate moieties with high electron affinities. In this theoretical work, to gain an insight into the chemical structure-property relationships was aimed by controllable modification of the main chain structures. Two cyanovinylene derivatives with 2,7-fluorenylene and p-phenylene moieties in the main chains, namely, poly { (2,5-dimethoxy-p-phenylene- 1,4-ylene)-alt-[ 1,2-bis(p-phenylene)- 1- cyanovinylene]} (PPhCN) and poly{[9,9-dimethyl-2,7-fluorenylene]-alt-[1,2-bis(p-phenylene)-1-cyanovinylene]} (PFCN), were studied employing density functional theory (DFT) and time dependent density functional theory (TD-DFT) with B3LYP functional. The electronic properties of the neutral molecules, extrapolated ionization potentials (IP) and electron affinities (EA), and energy gaps were investigated in comparison with pristine poly(2,7- fluorenylene). From comparison with poly(2,7-fluorenylene) (PF), the 1,2-bis(p-phenylene)-1-cyanovi-nylene unit was found to be a good electron-withdrawing moiety for electronic materials and the incorporation of 1,2-bis(p- phenylene)-1-cyanovinylene resulted in a narrow band gap and a red shift of both the absorption and photoluminescence emission peaks. Most importantly, the LUMO energies of PFCN are around 1 eV lower than those of PF, which results in the decrement of EA about 0.9 eV, indicating that the 1,2-bis(p-phenylene)-1-cyanovinylene unit has significantly improved the electron-accepting properties of the copolymer PFCN. Substitution of 2,5-dimethoxy-p-phenylene for 9,9-dimethyl-2,7-fluorenylene induced larger band gaps and thus a blue-shift in absorption and emission peaks, which can be attributed to the better conjugated backbone in PFCN.  相似文献   

5.
A strategy of the fine‐tuning of the degree of intrachain charge transfer and aromaticity of polymer backbone was adopted to design and synthesize new polymers applicable in photovoltaics. Three conjugated polymers P1 , P2 , and P3 were synthesized by alternating the electron‐donating dithieno[3,2‐b:2′3′‐d]pyrrole (D) and three different electron‐accepting (A) segments ( P1 : N‐(2‐ethylhexyl)phthalimide; P2 : 1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole; and P3 : thiophene‐3‐hexyl formate) in the polymer main chain. Among the three polymers, P2 possessed the broadest absorption band ranging from 300 to 760 nm, the lowest bandgap (1.63 eV), and enough low HOMO energy level (?5.27 eV) because of the strong intrachain charge transfer from D to A units and the appropriate extent of quinoid state in the main chain of P2 , which was convinced by the theoretical simulation of molecular geometry and front orbits. Photovoltaic study of solar cells based on the blends of P1 – P3 and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) demonstrated that P2 :PCBM exhibited the best performance: a power conversion efficiency of 1.22% with a high open‐circuit voltage (VOC) of 0.70 V and a large short‐circuit current (ISC) of 5.02 mA/cm2 were achieved. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
1,4,8,9‐Naphthalene diimides (NDIs) with strong electron accepting ability and high stability are excellent building blocks for semiconductor polymers. However, 1,8‐naphthalene monoimide (NMI) with similar structure and energy levels as that of NDI has never been used to construct conjugated polymers because of synthetic difficulty. Herein, 3,6‐dibromo‐NMI (DBNMI) with bulky alkyl groups was obtained effectively in a four‐step synthesis, and three donor‐acceptor (D‐A) type conjugated polymers based on NMI were firstly prepared. These polymers have strong absorption in the range of 300–600 nm, low LUMO level of 3.68 eV, and moderate bandgaps of 2.18 eV. Space charge limiting current measurements indicate these polymers are typical electron transporting materials, and the highest electron mobility is up to 5.8 × 10−3 cm2 V−1 s−1, which is close to the star acceptor based on NDI (N2200, 5.0 × 10−3 cm2 V−1 s−1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 276–281  相似文献   

7.
Summary: The pyrazinoquinoxaline‐based conjugated polymers poly(2,7‐diphenylpyrazino(2,3‐g)quinoxaline‐3,8‐diyl‐1,4‐phenylene) (PZQP) and poly(2,7‐diphenylpyrazino(2,3‐g)quinoxaline‐3,8‐diyl‐2,5‐thiophene) (PZQT) have been synthesized and characterized. PZQP and PZQT have optical band gaps of 2.44 and 1.76 eV, respectively. Both polymers showed highly reversible electrochemical reduction, with an electron affinity of 3.6 eV for PZQP and 3.8 eV for PZQT. The electronic structures of PZQP, PZQT, and related poly(pyrazinoquinoxaline)s, were calculated by density functional theory and compared with the experimental results.

Molecular structure and reduction cyclic voltammogram of PZQP.  相似文献   


8.
《化学:亚洲杂志》2017,12(15):1861-1864
Porphyrin‐based molecules have been widely used in dye‐sensitized solar cells and bulk heterojunction solar cells, but their application in field‐effect transistors (FETs) is limited. In this work, two conjugated polymers based on diketopyrrolopyrrole and porphyrin units were developed for FETs. The polymers exhibit extra‐low band gap with energy levels close to −4.0 eV and −5.0 eV due to the strong electron‐donating and withdrawing ability of porphyrin and diketopyrrolopyrrole. With additionally high crystalline properties, ambipolar charge carrier transports with a hole mobility of 0.1 cm2 V−1 s−1 in FETs were realized in these polymers, representing the highest performance in solution‐processed FETs based on porphyrin unit.  相似文献   

9.
Non‐symmetrical 6,13‐disubstituted pentacenes bearing trifluoromethyl and aryl substituents have been synthesized starting from pentacenequinone. Diazapentacenes with a variety of fluorine substituents were prepared either via a Hartwig–Buchwald aryl amination route or by a SNAr strategy. As a result of a non‐symmetric substitution pattern containing electron‐donating substituents in combination with electron‐accepting fluorine substituents, the synthesized compounds feature distinct molecular dipoles. All compounds are analyzed regarding their optoelectronic properties in solution with special focus on the frontier orbital energies as well as their molecular packing in the crystal structures. The analyses of isolated molecules are complemented by thin‐film studies to examine their solid‐state properties. A precise comparison between these and the molecular properties gave detailed insights into the exciton binding energies of these compounds, which are explained by means of a simple model considering the molecular packing and polarizabilities.  相似文献   

10.
The synthesis, characterization, and photovoltaic properties of a series of four conjugated polymers containing 2‐aryl‐2H‐benzotriazoles and “bis(thiopheno)dialkylfluorenes” is described. The polymers were obtained via Suzuki‐polycondensation and comprise alternating electron rich and electron poor building blocks. The impact of systematic structural changes on the electronic and morphological properties and device efficiencies were studied. Application of these polymers as light‐harvesting and electron‐donating materials in organic solar cells using PCBM derivatives as electron accepting materials resulted in power conversion efficiencies up to 1.8%. Both the properties of the pristine polymers and the device performance show that the impact of the substitution farther‐off the backbone is negligible while substitution directly on the backbone has a major impact. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

11.
Summary: The synthesis and thermal, redox and photoluminescence properties of a soluble donor‐acceptor polyplatinayne with the electron‐accepting silole ring and its model compound are described. The polymer has an optical band gap of 2.10 eV which is much lower than that of thienyl‐ or silyl‐bridged congeners. The incorporation of electron‐accepting silole unit in the metallopolymer main chain creates a new π‐conjugated system that features unique donor‐acceptor characteristics.

  相似文献   


12.
Phosphorus analogues of pyrromellitic diimides (PyDIs), which represent a family of privileged electron‐accepting organic compounds, have been successfully synthesized as novel electron‐accepting π‐conjugated molecules. Investigation into their physicochemical properties uncovered their prominent electron‐accepting abilities over the corresponding PyDI. Furthermore, theoretical studies revealed the significant contribution of σ*–π* hyperconjugation in stabilizing the LUMO+1.  相似文献   

13.
Donor‐acceptor conjugated polymers containing a new imide‐functionalized naphthodithiophene (INDT) as the acceptor unit and a 2,2'‐bithiophene with varied substituents as the donor unit have been synthesized. The bandgaps of these polymers depend strongly on the dihedral angle of the 2,2'‐bithiophene unit. The 3,3'‐dialkoxy substitution (polymers PDOR / PBOR ) leads to near planar bithiophene conformation due to the well‐known S–O short contact, while the 3,3'‐dialkyl substitution (polymer PDR ) results in significant twisting due to the steric effect. Consequently PDOR / PBOR shows the lowest bandgap of 1.82/1.85 eV while PDR has a bandgap of 2.38 eV. Bulk‐heterojunction solar cells of the polymer/fullerene blends have been fabricated. Preliminary results show that PBOR gives the best device performance with power conversion efficiencies as high as 2.45% in air without any thermal annealing treatment, indicating the promising potential of INDT‐containing conjugated polymers for efficient solar cells. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3818–3828  相似文献   

14.
The electronic properties of conjugated polyelectrolytes (CPEs) with poly(fluorene-co-phenylene) backbones and different counterions and charges have been investigated using absorption and ultraviolet photoelectron spectroscopy (UPS). The optical energy band gap of CPEs depends mainly on their conjugated backbone and are nearly insensitive to the charges or counterions. UPS measurements reveal that electron injection from Au to polymers with cationic groups is more efficient than for the neutral and anionic counterparts. The vacuum levels of CPEs were also shifted toward higher or lower binding energy, relative to that of Au, depending on the charge and counterion presence, and provide insight into the general alignment of dipoles at the metal/organic interface.  相似文献   

15.
The polycarbazoles have been proved to efficiently suppress the keto defect emission. Three carbazole‐based conjugated polymers, poly[9‐methyl‐3‐(4‐vinylstyryl)‐9H‐carbazole] (PBC), poly[9‐methyl‐3‐(2‐(5‐vinylthiophen‐2‐yl)vinyl)‐9H‐carbazole] (PBT) and poly[9‐methyl‐3‐(2‐(5‐vinylfuran‐2‐yl)vinyl)‐9H‐carbazole] (PBF), were investigated by quantum‐chemical techniques, and gain a detailed understanding of the influence of carbazole units and the introduction of electron‐donating on the electronic and optical properties. The electronic properties of the neutral molecules, HOMO‐LUMO gaps (ΔE), in addition to ionization potential (Ip) and electron affinity (Ea), are studied using B3LYP density functional theory. The lowest excitation energies (Eg) and the absorption wavelength are studied using the time dependent density functional theory (TDDFT). The calculated results show that all three series of polymers have good planarity. And the highest‐occupied molecular orbital (HOMO) energies lift about 0.36–0.61 eV and thus the IP decrease about 0.01–0.19 eV compared to polycarbazole, suggesting the significant improved hole‐accepting and transporting abilities. By introducing the electron‐donating 1,4‐divinylphenylene or 2,5‐divinylthiophene or 2,5‐divinylfuran units in the backbone, and the lowest‐unoccupied molecular orbital (LUMO) energies decrease 0.20–0.39 eV. In addition, PBC, PBT and PBF have longer maximal absorption wavelengths than polycarbazole. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 706–714, 2009  相似文献   

16.
Three narrow‐band‐gap conjugated copolymers based on indenofluorene and triphenylamine with pendant donor‐π‐acceptor chromophores were successfully synthesized by post‐functionalization approach. All the polymers have good solubility in common solvents and excellent thermal stability. The photophysical properties, energy levels and band gaps of the polymers were well manipulated by introducing different acceptor groups onto the end of their conjugated side chains. By using different acceptor groups, the band gaps of the polymers were narrowed from 1.86 to 1.53 eV by lowering their lowest unoccupied molecular orbital levels, whereas their relatively deep highest occupied molecular orbital levels of approximately ?5.35 eV were maintained. Bulk‐heterojunction solar cells with these polymers as electron donors and (6,6)‐phenyl‐C71‐butyric acid methyl ester as acceptor showed power conversion efficiencies as high as 3.1% and high open circuit voltages more than 0.88 eV. The relationships between the performance and film morphology, energy levels, charge mobilities were discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Two novel dibromo monomers consisting of the isomers of 5‐alkylphenanthridin‐6(5H)‐one (PN) and 6‐alkoxylphenanthridine (PO) were synthesized through alkylation of the precursor 3,8‐dibromophenanthrindi‐6(5H)‐one, where the molecular structures were confirmed by NMR spectroscopy. The medium bandgap conjugated polymers PDBTPN and PDBTPO were constructed by utilizing such two isomers PN and PO as the electron‐donating units and dithiophenebenzo[2,1,3]diathiazole as the electron‐accepting unit. The resulting polymers exhibited analogous absorption profiles with optical bandgap of 1.90 eV, while PDBTPO showed slightly higher absorption coefficiency. Cyclic voltammetry measurements revealed that these polymers had relatively deep highest occupied molecular orbital levels of about ?5.70 eV. Polymer solar cells based on such two polymers showed relatively high open‐circuit voltage of about 0.90 V. All devices exhibited moderate performances with the best power conversion efficiency of 3.77% achieved based on PDBTPO. Devices based on PDBTPO showed slightly higher power conversion efficiency than those based on PDBTPN, which can be ascribed to higher hole mobility and more favorable film morphology of the former. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2119–2127  相似文献   

18.
Novel two‐dimensional donor–acceptor (D–A) structured conjugated polymers, P1–P4, were designed and synthesized by introducing electron‐deficient quinoxaline as core and electron‐rich alkoxyl‐phenylenevinylene in side chains and p‐phenylenevinylene, triphenylamine, or thiophene in main chain. Benefited from the D–A structures, the polymers possess low bandgaps of 1.75 eV, 1.86 eV, 1.59 eV, and 1.58 eV for P1, P2, P3, and P4, respectively, and show broad absorption band in the visible region: the shorter wavelength absorption peak at ~400 nm ascribed to the conjugated side chains and the longer wavelength absorption peak between 500 nm and 750 nm belonging to the absorption of the conjugated main chains. Especially, the absorption band of P4 film covers the whole visible range from 300 nm to 784 nm. The power conversion efficiencies of the polymer solar cells based on P1–P4 as donor and PCBM as acceptor are 0.029%, 0.14%, 0.46%, and 0.57%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The polymers with the low bandgap and broad absorption band are promising photovoltaic materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4038–4049, 2008  相似文献   

19.
Two novel anionic conjugated copolyelectrolytes PSDPPPV and PSDPPPE were synthesized via Heck/Sonogashira coupling reactions and characterized by FT‐IR, 1H NMR, UV‐vis, and PL spectroscopy. The two polymers are respectively constituted of 2,5‐diethoxy‐1,4‐phenyleneethynylene (DPV) and 2,5‐diethoxy‐1,4‐phenyleneethynylene (DPE) with 1,4‐diketo‐2,5‐bis(4‐sulfonylbutyl)‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole (SDPP) which is a novel water soluble diketopyrrolopyrrole derivative. PSDPPPV and PSDPPPE show broad absorption band in visible region and they exhibit strong fluorescence quenching in aqueous solution. The fluorescence of their aqueous solutions can be enhanced in the presence of cationic surfactant or polymer nonionic surfactant. Fluorescence enhancement by introduction of polyvinylpyrrolidone (PVP) shows linear response. This result provides a controllable method to increase fluorescence intensity of dipyrrolopyrrole‐based conjugate polyelectrolytes in aqueous phase. The optical properties suggested that PSDPPPV and PSDPPPE which are negatively charged conjugated polymers can assemble with positively charged photovoltaic materials to form ionic photoactive layer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 739–751  相似文献   

20.
Herein, two new quadrupolar acceptor‐π‐donor‐π‐acceptor (A‐π‐D‐π‐A) chromophores have been prepared featuring a strongly electron‐donating diborene core and strongly electron‐accepting dimesitylboryl (BMes2) and bis(2,4,6‐tris(trifluoromethyl)phenyl)boryl (BFMes2) end groups. Analysis of the compounds by NMR spectroscopy, X‐ray crystallography, cyclic voltammetry, and UV/Vis‐NIR absorption and emission spectroscopy indicated that the compounds have extended conjugated π‐systems spanning their B4C8 cores. The combination of exceptionally potent π‐donor (diborene) and π‐acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO–LUMO gaps, resulting in strong absorption in the near‐IR region with maxima in THF at 840 and 1092 nm and very high extinction coefficients of ca. 120 000 m ?1 cm?1. Both molecules also display weak near‐IR fluorescence with small Stokes shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号