共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruding Zhang Jiajia Huang Wenzhuo Deng Jingze Bao Yilong Pan Shuping Huang Chuan‐Fu Sun 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(46):16626-16631
A key challenge for potassium‐ion batteries is to explore low‐cost electrode materials that allow fast and reversible insertion of large‐ionic‐size K+. Here, we report an inorganic‐open‐framework anode (KTiOPO4), which achieves a reversible capacity of up to 102 mAh g?1 (307 mAh cm?3), flat voltage plateaus at a safe average potential of 0.82 V (vs. K/K+), a long lifespan of over 200 cycles, and K+‐transport kinetics ≈10 times faster than those of Na‐superionic conductors. Combined experimental analysis and first‐principles calculations reveal a charge storage mechanism involving biphasic and solid solution reactions and a cell volume change (9.5 %) even smaller than that for Li+‐insertion into graphite (≈10 %). KTiOPO4 exhibits quasi‐3D lattice expansion on K+ intercalation, enabling the disintegration of small lattice strain and thus high structural stability. The inorganic open‐frameworks may open a new avenue for exploring low‐cost, stable and fast‐kinetic battery chemistry. 相似文献
2.
A Porous Network of Bismuth Used as the Anode Material for High‐Energy‐Density Potassium‐Ion Batteries 下载免费PDF全文
Kaixiang Lei Chenchen Wang Luojia Liu Yuwen Luo Chaonan Mu Prof. Fujun Li Prof. Jun Chen 《Angewandte Chemie (International ed. in English)》2018,57(17):4687-4691
Potassium‐ion batteries (KIBs) are plagued by a lack of materials for reversible accommodation of the large‐sized K+ ion. Herein we present, the Bi anode in combination with the dimethoxyethane‐(DME) based electrolyte to deliver a remarkable capacity of ca. 400 mAh g?1 and long cycle stability with three distinct two‐phase reactions of Bi? KBi2?K3Bi2?K3Bi. These are ascribed to the gradually developed three‐dimensional (3D) porous networks of Bi, which realizes fast kinetics and tolerance of its volume change during potassiation and depotassiation. The porosity is linked to the unprecedented movement of the surface Bi atoms interacting with DME molecules, as suggested by DFT calculations. A full KIB of Bi//DME‐based electrolyte//Prussian blue of K0.72Fe[Fe(CN)6] is demonstrated to present large energy density of 108.1 Wh kg?1 with average discharge voltage of 2.8 V and capacity retention of 86.5 % after 350 cycles. 相似文献
3.
As an energy‐storage system, rechargeable potassium‐ion batteries (PIBs) have aroused widespread attention in recent years due to their earth abundance, low standard redox potential, and high ionic conductivity. The development of high‐performance electrode materials is key to optimize the battery performance and useful to improve the feasibility of PIB technology. In this sense, a minireview on alloying‐type anode materials for advanced PIBs is provided, covering the potassium storage properties, reaction mechanisms, theoretical analysis, electrochemical performance, and suitable binders and electrolytes. 相似文献
4.
Xiaolong Zhou Qirong Liu Chunlei Jiang Bifa Ji XiuLei Ji Yongbing Tang Hui‐Ming Cheng 《Angewandte Chemie (International ed. in English)》2020,59(10):3802-3832
Rocking‐chair based lithium‐ion batteries (LIBs) have extensively applied to consumer electronics and electric vehicles (EVs) for solving the present worldwide issues of fossil fuel exhaustion and environmental pollution. However, due to the growing unprecedented demand of LIBs for commercialization in EVs and grid‐scale energy storage stations, and a shortage of lithium and cobalt, the increasing cost gives impetus to exploit low‐cost rechargeable battery systems. Dual‐ion batteries (DIBs), in which both cations and anions are involved in the electrochemical redox reaction, are one of the most promising candidates to meet the low‐cost requirements of commercial applications, because of their high working voltage, excellent safety, and environmental friendliness compared to conventional rocking‐chair based LIBs. However, DIB technologies are only at the stage of fundamental research and considerable effort is required to improve the energy density and cycle life further. We review the development history and current situation, and discuss the reaction kinetics involved in DIBs, including various anionic intercalation mechanism of cathodes, and the reactions at the anodes including intercalation and alloying to explore promising strategies towards low‐cost DIBs with high performance. 相似文献
5.
Dr. Haijun Yu Dr. Yang Ren Dongdong Xiao Shaohua Guo Dr. Yanbei Zhu Dr. Yumin Qian Prof. Lin Gu Prof. Haoshen Zhou 《Angewandte Chemie (International ed. in English)》2014,53(34):8963-8969
Sodium‐ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large‐scale energy storage devices because sodium is an abundant and low‐cost material. However, the development of electrode materials with long‐term stability has remained a great challenge. A novel negative‐electrode material, a P2‐type layered oxide with the chemical composition Na2/3Co1/3Ti2/3O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g?1 with a safe average storage voltage of approximately 0.7 V in the sodium half‐cell. This P2‐type layered oxide is a promising anode material for sodium‐ion batteries with a long cycle life and should greatly promote the development of room‐temperature sodium‐ion batteries. 相似文献
6.
7.
8.
Youngjin Kim Kwang‐Ho Ha Prof. Seung M. Oh Prof. Kyu Tae Lee 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(38):11980-11992
Na‐ion batteries are an attractive alternative to Li‐ion batteries for large‐scale energy storage systems because of their low cost and the abundant Na resources. This Review provides a comprehensive overview of selected anode materials with high reversible capacities that can increase the energy density of Na‐ion batteries. Moreover, we discuss the reaction and failure mechanisms of those anode materials with a view to suggesting promising strategies for improving their electrochemical performance. 相似文献
9.
Dr. Malin Li Dr. Yu Gao Dr. Nan Chen Dr. Xing Meng Prof. Chunzhong Wang Dr. Yaoqing Zhang Dr. Dong Zhang Prof. Yingjin Wei Dr. Fei Du Prof. Gang Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(32):11405-11412
Cu3V2O8 nanoparticles with particle sizes of 40–50 nm have been prepared by the co‐precipitation method. The Cu3V2O8 electrode delivers a discharge capacity of 462 mA h g?1 for the first 10 cycles and then the specific capacity, surprisingly, increases to 773 mA h g?1 after 50 cycles, possibly as a result of extra lithium interfacial storage through the reversible formation/decomposition of a solid electrolyte interface (SEI) film. In addition, the electrode shows good rate capability with discharge capacities of 218 mA h g?1 under current densities of 1000 mA g?1. Moreover, the lithium storage mechanism for Cu3V2O8 nanoparticles is explained on the basis of ex situ X‐ray diffraction data and high‐resolution transmission electron microscopy analyses at different charge/discharge depths. It was evidenced that Cu3V2O8 decomposes into copper metal and Li3VO4 on being initially discharged to 0.01 V, and the Li3VO4 is then likely to act as the host for lithium ions in subsequent cycles by means of the intercalation mechanism. Such an “in situ” compositing phenomenon during the electrochemical processes is novel and provides a very useful insight into the design of new anode materials for application in lithium‐ion batteries. 相似文献
10.
Dingrong Deng Dr. Yanjun Zhang Gen Li Xueyun Wang Dr. Li‐Hua Gan Dr. Li Jiang Prof. Chun‐Ru Wang 《化学:亚洲杂志》2014,9(5):1265-1269
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries. 相似文献
11.
A Biodegradable Polydopamine‐Derived Electrode Material for High‐Capacity and Long‐Life Lithium‐Ion and Sodium‐Ion Batteries 下载免费PDF全文
Tao Sun Zong‐jun Li Heng‐guo Wang Di Bao Fan‐lu Meng Prof. Xin‐bo Zhang 《Angewandte Chemie (International ed. in English)》2016,55(36):10662-10666
Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox‐active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium‐ion batteries (LIBs) or sodium‐ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g?1 for LIBs and 500 mAh g?1 for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders. 相似文献
12.
Gi Dae Park Prof. Yun Chan Kang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(12):4140-4146
A simple one‐pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium‐ion batteries was developed. The detailed mechanism of formation of the CoSex–rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple‐structured CoSex–rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85Se with a minor phase of CoSe2. The bare CoSex powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSex–rGO composite and bare CoSex powders in the 50th cycle at a constant current density of 0.3 A g?1 were 420 and 215 mA h g?1, respectively, and their capacity retentions measured from the second cycle were 80 and 46 %, respectively. The high structural stability of the CoSex–rGO composite powders for repeated sodium‐ion charge and discharge processes resulted in superior sodium‐ion storage properties compared to those of the bare CoSex powders. 相似文献
13.
A New Anode for Lithium‐Ion Batteries Based on Single‐Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design 下载免费PDF全文
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1. 相似文献
14.
Dr. Nan Chen Dr. Yu Gao Meina Zhang Dr. Xing Meng Prof. Chunzhong Wang Prof. Yingjin Wei Dr. Fei Du Prof. Gang Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(21):7248-7254
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials. 相似文献
15.
Shuang Jiang Dr. Yong Lu Dr. Yanying Lu Dr. Mo Han Haixia Li Prof. Zhanliang Tao Prof. Zhiqiang Niu Prof. Jun Chen 《化学:亚洲杂志》2018,13(10):1379-1385
Lithium–sulfur (Li–S) batteries have shown great potential as high energy‐storage devices. However, the stability of the Li metal anode is still a major concern. This is due to the formation of lithium dendrites and severe side reactions with polysulfide intermediates. We herein develop an anode protection method by coating a Nafion/TiO2 composite layer on the Li anode to solve these problems. In this architecture, Nafion suppresses the growth of Li dendrites, protects the Li anode, and prevents side reactions between polysulfides and the Li anode. Moreover, doped TiO2 further improves the ionic conductivity and mechanical properties of the Nafion membrane. Li–S batteries with a Nafion/TiO2‐coated Li anode exhibit better cycling stability (776 mA h g?1 after 100 cycles at 0.2 C, 1 C=1672 mA g?1) and higher rate performance (787 mA h g?1 at 2 C) than those with a pristine Li anode. This work provides an alternative way to construct stable Li anodes for high‐performance Li–S batteries. 相似文献
16.
A Hierarchical Tin/Carbon Composite as an Anode for Lithium‐Ion Batteries with a Long Cycle Life 下载免费PDF全文
Dr. Xingkang Huang Dr. Shumao Cui Dr. Jingbo Chang Peter B. Hallac Christopher R. Fell Yanting Luo Bernhard Metz Junwei Jiang Patrick T. Hurley Prof. Junhong Chen 《Angewandte Chemie (International ed. in English)》2015,54(5):1490-1493
Tin is a promising anode candidate for next‐generation lithium‐ion batteries with a high energy density, but suffers from the huge volume change (ca. 260 %) upon lithiation. To address this issue, here we report a new hierarchical tin/carbon composite in which some of the nanosized Sn particles are anchored on the tips of carbon nanotubes (CNTs) that are rooted on the exterior surfaces of micro‐sized hollow carbon cubes while other Sn nanoparticles are encapsulated in hollow carbon cubes. Such a hierarchical structure possesses a robust framework with rich voids, which allows Sn to alleviate its mechanical strain without forming cracks and pulverization upon lithiation/de‐lithiation. As a result, the Sn/C composite exhibits an excellent cyclic performance, namely, retaining a capacity of 537 mAh g?1 for around 1000 cycles without obvious decay at a high current density of 3000 mA g?1. 相似文献
17.
Multiple Ambient Hydrolysis Deposition of Tin Oxide into Nanoporous Carbon To Give a Stable Anode for Lithium‐Ion Batteries 下载免费PDF全文
Dr. Vadivukarasi Raju Xingfeng Wang Dr. Wei Luo Prof. Xiulei Ji 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(25):7686-7691
A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g?1 as an anode for Li‐ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g?1) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g?1 after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well‐tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions. 相似文献
18.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(27):7989-7993
To recycle rusty stainless‐steel meshes (RSSM) and meet the urgent requirement of developing high‐performance cathodes for potassium‐ion batteries (KIB), we demonstrate a new strategy to fabricate flexible binder‐free KIB electrodes via transformation of the corrosion layer of RSSM into compact stack‐layers of Prussian blue (PB) nanocubes (PB@SSM). When further coated with reduced graphite oxide (RGO) to enhance electric conductivity and structural stability, the low‐cost, stable, and binder‐free RGO@PB@SSM cathode exhibits excellent electrochemical performances for KIB, including high capacity (96.8 mAh g−1), high discharge voltage (3.3 V), high rate capability (1000 mA g−1; 42 % capacity retention), and outstanding cycle stability (305 cycles; 75.1 % capacity retention). 相似文献
19.
20.
Yuanchun Ji Prof. Carsten Streb Prof. Yu‐Fei Song 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(51):18799-18804
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode. 相似文献