首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic acceptorless dehydrogenation is an environmentally benign way to desaturate organic compounds. This process is traditionally accomplished with transition‐metal‐based catalysts. Herein, a borane‐catalyzed, metal‐free acceptorless dehydrogenation of saturated N‐heterocycles is disclosed. Tris(pentafluorophenyl)borane was identified as a versatile catalyst, which afforded several synthetically important N‐heteroarenes in up to quantitative yield. Specifically, the present metal‐free catalytic system exhibited a uniquely high tolerance toward sulfur functionalities, and demonstrated superior reactivity in the synthesis of benzothiazoles compared to conventional metal‐catalyzed systems. This protocol can thus be regarded as the first example of metal‐free acceptorless dehydrogenation in synthetic organic chemistry.  相似文献   

2.
The efficient catalytic dehydrogenation of alkanes to olefins is one of the most investigated reactions in organic synthesis. In the coming years, an increased supply of shorter‐chain alkanes from natural and shale gas will offer new opportunities for inexpensive carbon feedstock through such dehydrogenation processes. Existing methods for alkane dehydrogenation using heterogeneous catalysts require harsh reaction conditions and have a lack of selectivity, whereas homogeneous catalysis methods result in significant waste generation. A strong need exists for atom‐efficient alkane dehydrogenations on a useful scale. Herein, we have developed improved acceptorless catalytic systems under optimal light transmittance conditions using trans‐[Rh(PMe3)2(CO)Cl] as the catalyst with different additives. Unprecedented catalyst turnover numbers are obtained for the dehydrogenation of cyclic and linear (from C4) alkanes and liquid organic hydrogen carriers. These reactions proceed with unique conversion, thereby providing a basis for practical alkane dehydrogenations.  相似文献   

3.
Single‐atom catalysts (SACs) have been explored widely as potential substitutes for homogeneous catalysts. Isolated cobalt single‐atom sites were stabilized on an ordered porous nitrogen‐doped carbon matrix (ISAS‐Co/OPNC). ISAS‐Co/OPNC is a highly efficient catalyst for acceptorless dehydrogenation of N‐heterocycles to release H2. ISAS‐Co/OPNC also exhibits excellent catalytic activity for the reverse transfer hydrogenation (or hydrogenation) of N‐heterocycles to store H2, using formic acid or external hydrogen as a hydrogen source. The catalytic performance of ISAS‐Co/OPNC in both reactions surpasses previously reported homogeneous and heterogeneous precious‐metal catalysts. The reaction mechanisms are systematically investigated using first‐principles calculations and it is suggested that the Eley–Rideal mechanism is dominant.  相似文献   

4.
An efficient metal‐free catalytic system has been developed based on hexagonal boron carbon nitride (h‐BCN) nanosheets for the dehydrogenation of N‐heterocycles with visible light; hydrogen gas is released in the process, and thus no proton acceptor is needed. This acceptorless dehydrogenation of hydroquinolines, hydroisoquinolines, and indolines to the corresponding aromatic N‐heterocycles occurred in excellent yield under visible‐light irradiation at ambient temperature. With h‐BCN as the photocatalyst and water as the solvent, this environmentally benign protocol shows broad substitution tolerance and high efficiency.  相似文献   

5.
Synthesizing energetic metal–organic frameworks at ambient temperature and pressure has been always a challenge in the research area of energetic materials. In this work, through in situ controllable synthesis, energetic metal–organic framework gem‐dinitromethyl‐substituted dipotassium 4,5‐bis(dinitromethyl)‐1,2,3‐triazole with a “cage‐like” crystal packing was obtained and characterized. Most importantly, for the first time, we found that it could be successfully afforded with a catalytic effect of trifluoroacetic acid. This new compound exhibited its high density (2.04 g cm?3) at ambient temperature, superior detonation velocity (8715 m s?1) to that of lead azide (5877 m s?1) and comparable to that of RDX (8748 m s?1). Its detonation products are mainly N2 (48.1 %), suggesting it is also a green energetic material. The above‐mentioned performance indicates its potential applications in detonator devices as lead‐free primary explosive.  相似文献   

6.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

7.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

8.
The formation of a frustrated Lewis pair consisting of sodium hydride (Na+H?) and a framework‐bound hydroxy proton O(H+) is reported upon H2 treatment of zeolite NaY loaded with Pt nanoparticles (Ptx/NaY). Frustrated Lewis pair formation was confirmed using in situ neutron diffraction and spectroscopic measurements. The activity of the intrazeolite NaH as a size‐selective catalyst was verified by the efficient esterification of acetaldehyde (a small aldehyde) to form the corresponding ester ethyl acetate, whereas esterification of the larger molecule benzaldehyde was unsuccessful. The frustrated Lewis pair (consisting of Na+H? and O(H+)) generated within zeolite NaY may be a useful catalyst for various catalytic reactions which require both H? and H+ ions, such as catalytic hydrogenation or dehydrogenation of organic compounds and activation of small molecules.  相似文献   

9.
The potential application of the primary amine/nitrile pair as a liquid organic hydrogen carrier (LOHC) has been evaluated. Ruthenium complexes of formula [(p‐cym)Ru(NHC)Cl2] (NHC=N‐heterocyclic carbene) catalyze the acceptorless dehydrogenation of primary amines to nitriles with the formation of molecular hydrogen. Notably, the reaction proceeds without any external additive, under air, and under mild reaction conditions. The catalytic properties of a ruthenium complex supported on the surface of graphene have been explored for reutilization purposes. The ruthenium‐supported catalyst is active for at least 10 runs without any apparent loss of activity. The results obtained in terms of catalytic activity, stability, and recyclability are encouraging for the potential application of the amine/nitrile pair as a LOHC. The main challenge in the dehydrogenation of benzylamines is the selectivity control, such as avoiding the formation of imine byproducts due to transamination reactions. Herein, selectivity has been achieved by using long‐chain primary amines such as dodecylamine. Mechanistic studies have been performed to rationalize the key factors involved in the activity and selectivity of the catalysts in the dehydrogenation of amines. The experimental results suggest that the catalyst resting state contains a coordinated amine.  相似文献   

10.
While titanium‐based metal–organic frameworks (MOFs) have been widely studied for their (photo)catalytic potential, only a few TiIV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK‐47 is now presented, the first Ti carboxylate MOF based on sheets of TiIVO6 octahedra, which can be synthesized with a range of different linkers. COK‐47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X‐ray total scattering, EXAFS, and solid‐state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  相似文献   

11.
The iron‐catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic FeII/FeIII precursors and tris[2‐(diphenylphosphino)ethyl]phosphine ( 1 , PP3). In contrast to most known noble‐metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand‐to‐metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3)]BF4/PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm?1, which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand.  相似文献   

12.
Metal?metal singly‐bonded diruthenium complexes, bridged by naphthyridine‐functionalized N‐heterocyclic carbene (NHC) ligands featuring a hydroxy appendage on the naphthyridine unit, are obtained in a single‐pot reaction of [Ru2(CH3COO)2(CO)4] with 1‐benzyl‐3‐(5,7‐dimethyl‐1,8‐naphthyrid‐2‐yl)imidazolium bromide (BIN ? HBr) or 1‐isopropyl‐3‐(5,7‐dimethyl‐1,8‐naphthyrid‐2‐yl)imidazolium bromide (PIN ? HBr), TlBF4, and substituted benzaldehyde containing an electron‐withdrawing group. The modified NHC‐naphthyridine‐hydroxy ligand spans the diruthenium unit in which the NHC carbon and hydroxy oxygen occupy the axial sites. All the synthesized compounds catalyze acceptorless dehydrogenation of alcohols to the corresponding aldehydes in the presence of a catalytic amount of weak base 1,4‐diazabicyclo[2.2.2]octane (DABCO). Further, acceptorless dehydrogenative coupling (ADHC) of the alcohol with amines affords the corresponding imine as the sole product. The substrate scope is examined with 1 (BIN, p‐nitrobenzaldehyde). A similar complex [Ru2(CO)4(CH3COO)(3‐PhBIN)][Br], that is devoid of a hydroxy arm, is significantly less effective for the same reaction. Neutral complex 1 a , obtained by deprotonation of the hydroxy arm in 1 , is found to be active for the ADHC of alcohols and amines under base‐free conditions. A combination of control experiments, deuterium labeling, kinetic Hammett studies, and DFT calculations support metal–hydroxyl/hydroxide and metal–metal cooperation for alcohol activation and dehydrogenation. The bridging acetate plays a crucial role in allowing β‐hydride elimination to occur. The ligand architecture on the diruthenium core causes rapid aldehyde extrusion from the metal coordination sphere, which is responsible for exclusive imine formation.  相似文献   

13.
Dehydrogenation of propane to propylene over zinc oxide catalysts supported on steaming‐treated HZSM‐5 in the presence of CO2 has been investigated. The highest catalytic performance can be achieved on the 5%ZnO/HZSM‐5(650) catalyst with the HZSM‐5 support steaming at 650°C, which allows the maximum propylene yields of 29.7% and 20.3% at the initial and steady states, respectively, in the catalytic dehydrogenation of propane at 600°C. The superior catalytic performance of this catalyst can be attributed to high dispersion of ZnO and appropriate Br?nsted acidity of the HZSM‐5(650) support. The catalytic stability is enhanced by the addition of CO2 to the feed gas due to the suppression of coke formation.  相似文献   

14.
A feasible strategy is reported for the synthesis of a disk‐like Pt/CeO2‐p‐TiO2 catalyst derived from the titanium‐based metal–organic framework (MOF) MIL‐125(Ti) through a few valid steps. To verify the successful synthesis and structural features of the Pt/CeO2‐p‐TiO2 catalyst, as‐prepared samples were characterized using several techniques. The characterizations demonstrated that MOF‐derived porous TiO2 was appropriate for application as a support owing to its moderate surface area (101 m2 g?1) and suitable pore size (6 nm). Moreover, to study the effect of calcination temperature on the catalytic performance, the obtained catalyst was calcined at various temperatures. It was found that Pt/CeO2‐p‐TiO2 calcined at 550 °C exhibited the highest catalytic performance, evaluated by means of the reduction of 4‐nitrophenol monitored by UV–visible spectra. Furthermore, this catalyst showed good reusability with a conversion of 94% even after six cycles. Finally, a possible reaction mechanism was proposed to explain the reduction of 4‐nitrophenol to 4‐aminophenol over the Pt/CeO2‐p‐TiO2 catalyst.  相似文献   

15.
Metal–organic layers (MOLs) represent an emerging class of tunable and functionalizable two‐dimensional materials. In this work, the scalable solvothermal synthesis of self‐supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene‐1,3,5‐tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4′‐(4‐benzoate)‐(2,2′,2′′‐terpyridine)‐5,5′′‐dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single‐site solid catalysts for the hydrosilylation of terminal olefins. MOL‐based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal–organic frameworks. This work uncovers an entirely new strategy for designing single‐site solid catalysts and opens the door to a new class of two‐dimensional coordination materials with molecular functionalities.  相似文献   

16.
Herein, the first acceptorless dehydrogenation of tetrahydroquinolines (THQs), indolines, and other related N‐heterocycles, by merging visible‐light photoredox catalysis and cobalt catalysis at ambient temperature, is described. The potential applications to organic transformations and hydrogen‐storage materials are demonstrated. Primary mechanistic investigations indicate that the catalytic cycle occurs predominantly by an oxidative quenching pathway.  相似文献   

17.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

18.
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium‐ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal‐organic‐frameworks with well‐controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4@NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni?Co‐based metal‐organic framework (NiCo‐MOF) and characterized by scanning electron microscopy, transition electron microscopy, X‐Ray diffraction, X‐Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4@NC composite exhibits a capacity of 325 mAh g?1 at a current density of 1 A g?1, and 277.8 mAh g?1 at 10 A g?1. Most importantly, the NiCoSe4@NC retains a capacity of 293 mAh g?1 at 1 A g?1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.  相似文献   

19.
A facile one‐pot synthesis of 2,5‐disubstituted oxazoles was developed via cyclization of aldoximes and phenylacetylene then dehydrogenation oxidation. 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone was studied for the selective oxidation of oxazolines using Cu2+/Li+ as catalyst and O2 as indirect oxidant. The reaction results showed that this catalyst system can effectively catalyze the oxidation of oxazolines to the corresponding oxazoles. Thus, a variety of polysubstituted oxazoles was easily synthesized in high yields by catalytic oxidation of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone/CuCl2/LiCl/O2.  相似文献   

20.
Rhenium nanocrystalline particles (Re NPs), of 2 nm size, were prepared from NH4ReO4 under mild conditions in neat alcohol. The unsupported Re NPs convert secondary and benzylic alcohols to ketones and aldehydes, respectively, through catalytic acceptorless dehydrogenation (AD). The oxidant‐ and acceptor‐free neat dehydrogenation of alcohols to obtain dihydrogen gas is a green and atom‐economical process for making carbonyl compounds. Secondary aliphatic alcohols give quantitative conversion and yield. Transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Re K‐edge X‐ray absorption near‐edge structure (XANES), and X‐ray absorption fine structure (EXAFS) data confirmed the characterization of the Re NPs as metallic rhenium with surface oxidation to rhenium(IV) oxide (ReO2). Isotope labeling experiments revealed a novel γ‐CH activation mechanism for AD of alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号