首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The simultaneous determination of amphetamine and methadone was carried out by magnetic graphene oxide nanoparticles, a magnetic solid‐phase extraction adsorbent, as a new sample treatment technique. The main factors (the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, the ionic strength of extraction medium, and agitation rate) influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, good linearity was observed in the range of 100–1500 ng/mL for amphetamine and 100–1000 ng/mL for methadone. The method was evaluated for determination of AM and methadone in positive urine samples, satisfactory results were obtained, therefore magnetic solid‐phase extraction can be applied as a novel method for the determination of drugs of abuse in forensic laboratories.  相似文献   

2.
In this paper, a new ionic‐liquid‐functionalized magnetic material was prepared based on the immobilization of an ionic liquid on silica magnetic particles that could be successfully used as an adsorbent for the magnetic SPE of five sulfonylurea herbicides (bensulfuron‐methyl, prosulfuron, pyrazosulfuron‐ethyl, chlorimuron‐ethyl and triflusulfuron‐methyl) from environmental water samples. The main parameters affecting the extraction efficiency such as desorption conditions, sample pH, extraction time and so on, were optimized using the Taguchi method. Good linearities were obtained with correlation coefficients ranging from 0.9992 to 0.9999 in the concentration range of 0.1–50 μg L?1 and the LODs were 0.053–0.091 μg L?1. Under the optimum conditions, the enrichment factors of the method were 1155–1380 and the recoveries ranged from 77.8 to 104.4%. The proposed method was reliable and could be applied to the residue analysis of sulfonylurea herbicides in environmental water samples (tap, reservoir and river).  相似文献   

3.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   

4.
A new facile, rapid, inexpensive, and sensitive method for the analysis of six trace trichlorophenols in seawater samples was developed by magnetic micro‐solid‐phase extraction coupled to liquid chromatography with tandem mass spectrometry. Core–shell covalently functionalized ferroferric oxide coated with aminated silicon dioxide and decorated with multiwalled carbon nanotubes was applied as an adsorbent to perform the extraction process. The effect of factors including solution pH, contact time, adsorbent amount, and ionic strength were investigated in detail. The obtained results revealed that the proposed adsorbent was a highly effective and low‐cost magnetic micro‐solid‐phase extraction material for the enrichment of 2,3,4‐trichlorophenol, 2,3,5‐trichlorophenol, 2,3,6‐trichlorophenol, 2,4,5‐trichlorophenol, 2,4,6‐trichlorophenol, and 3,4,5‐trichlorophenol from seawater. Under the optimized conditions, the recoveries ranged from 88.0 to 99.5% at the three spiking levels, the limits of detection and the limits of quantification were 0.002 and 0.007 μg/L for the six trichlorophenols, respectively. The intra‐ and interday relative standard deviations were 2.0–6.7 and 4.5–8.9%, respectively. The calibration curves showed a good linearity in the range of 0.02–5.0 μg/L. The routine run analyses showed that the developed method was fast, simple, accurate, solvent‐saving and high resolution, and it was suitable for the determination of trace trichlorophenols in seawater.  相似文献   

5.
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid‐phase extraction. They were obtained through the copolymerization of a 1,8‐di(3‐vinylimidazolium)octane‐based ionic liquid with vinyl‐modified SiO2@Fe3O4, and were characterized by FTIR spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1–100 μg/L is obtained for all analytes, except for parathion (2–200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2–0.8 μg/L, and intraday and interday relative standard deviations are 1.7–7.4% (n = 5) and 3.8–8.0% (n = 3), respectively. The magnetic solid‐phase extraction combined with high‐performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations.  相似文献   

6.
Microwave‐assisted ionic‐liquid‐impregnated resin solid–liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic‐liquid‐impregnated resin was prepared by immobilizing 1‐hexyl‐3‐methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box–Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples.  相似文献   

7.
A simple pH‐responsive magnetic solid‐phase extraction method was developed using graphene oxide–coated nanoscale zerovalent iron nanoparticles as an efficient adsorbent prior to high‐performance liquid chromatography‐tandem mass spectrometry for determination of ultra‐trace quinolones in milk samples. Various parameters affecting maghemite synthesis and separation such as pH of sample solution, amount of magnetic adsorbent, eluent type, and volume were optimized. The limits of detection are from 3.1 to 13.3 ng/L. The intra‐ and interprecision values are in the range of 2.9–6.9% and 7.6–15.1%, respectively. Recoveries are from 82.4 to 103.9%. Therefore, this simple and sensitive method is suitable for detecting ultra‐trace quinolone residues in milk.  相似文献   

8.
Poly(ionic liquid)‐bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3O4 were combined in this material to provide an efficient and simple magnetic solid‐phase extraction approach. The adsorption behavior of the poly(ionic liquid)‐bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid‐phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3–0.8 ng/mL and precision in the range of 1.2–3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5–99.2% were obtained.  相似文献   

9.
In this work, a simple, facile, and sensitive magnetic solid‐phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high‐performance liquid chromatography analysis. Gold‐modified Fe3O4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8–500 μg/L for all the analytes) was attained with good correlation (R2 ≥ 0.991). The low limits of detection were 0.20–0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis.  相似文献   

10.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

11.
A simple, fast, effective, and environmentally friendly method, in situ solvent formation microextraction combined with magnetic dispersive micro‐solid‐phase extraction for the determination of four benzoylurea insecticides is presented herein for the first time. In the proposed method, 1‐hexyl‐3‐methylimidazolium bis[(trifluoromethane)sulfonyl]imide was formed by the reaction between 1‐hexyl‐3‐methylimidazolium chloride and lithium bis[(trifluoromethane)sulfonyl]imide and was used to extract benzoylurea insecticides. Then magnetic nanoparticles were added as carrier to retrieve and separate the ionic liquid from the sample solution. After the supernatant was removed, the ionic liquid was desorbed using acetonitrile and subsequently injected directly into a high‐performance liquid chromatograph equipped with a variable wavelength detector for analysis. The main factors affecting the extraction efficiency were investigated by a one factor at a time approach. Under optimized conditions, the proposed method showed good repeatability (RSD = 2.2–4.5%) and linearity (2–300 μg/L), with correlation coefficients greater than 0.9994 and low limits of detection (0.67–1.46 μg/L). Finally, the method was successfully applied to the analysis of four benzoylurea insecticides in environmental water samples with good recoveries (73.2–85.8%).  相似文献   

12.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

13.
A new method is successfully developed for the separation and determination of a very low amount of tramadol in urine using functionalized multiwalled carbon nanotubes/flower‐shaped zinc oxide before solid‐phase microextraction combined with gas chromatography. Under ultrasonic agitation, a sol of multiwalled carbon nanotubes and flower‐shaped zinc oxide were forced into and trapped within the pore structure of the polypropylene and the sol solution immobilized into the hollow fiber. Flower‐shaped zinc oxide was synthesized and characterized by Fourier transform infrared spectroscopy. The morphology of the fabricated solid‐phase microextraction surface was investigated by scanning electron microscopy and X‐ray diffraction. The parameters affecting the extraction efficiencies were investigated and optimized. Under the optimized conditions, the method shows linearity in a wide range of 0.12–7680 ng/mL, and a low detection limit (S/N = 3) of 0.03 ng/mL. The precision of the method was determined and a relative standard deviation of 3.87% was obtained. This method was successfully applied for the separation and determination of tramadol in urine samples. The relative recovery percentage obtained for the spiked urine sample at 1000 ng/mL was 94.2%.  相似文献   

14.
An improved novel method based on ionic liquid vortex‐assisted liquid–liquid microextraction has been developed for the extraction of methylmercury, ethylmercury and inorganic mercury in sediment samples prior to analysis by high‐performance liquid chromatography with cold vapor atomic fluorescence spectrometry. In this work, mercury species were firstly complexed with dithizone, and the complexes were extracted into 1‐hexyl‐3‐methylimidazolium hexafluorophosphate. Key factors that affect the extraction efficiency of mercury species, such as type and amount of ionic liquid and chelatants, extraction time, sample pH, salt effect and matrix effect were investigated. Under the optimum conditions, linearity was found in the concentration range from 0.1–70 ng/g. Limits of detection ranged from 0.037–0.061 ng/g. Reproducibility and recoveries were assessed by extracting a series of six independent sediment samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real sediment samples. In this work, ionic liquids vortex‐assisted liquid–liquid microextraction was for the first time used for the extraction of mercury species in sediment samples. The proposed method was proved to be much simpler and more rapid, as well as more environmentally friendly and efficient compared with the previous methods.  相似文献   

15.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

16.
Graphene oxide has received extensive attention because of its unique properties and potential applications. In this study, magnetic nitrogen‐doped graphene was prepared by one‐step hydrothermal reaction using urea as the dopant and reductant, and ferroferric oxide nanoparticles were in situ deposited on the surface of the nanohybrids. The magnetic nitrogen‐doped graphene was characterized using various physical and chemical methods. It was used as a new adsorbent for the magnetic solid‐phase extraction of four nonsteroidal anti‐inflammatory drugs from the river water. The parameters influencing the extraction efficiency were optimized in detail. Under optimal conditions, this method provided a wide linear range (5–200 ng/mL). The limits of detection were in the range of 1.07–5.10 ng/mL. The recoveries varied from 81.2 to 121.5% with relative standard deviations of less than 10.8%. Overall, we can conclude that the proposed method offers an efficient pretreatment and enrichment and can be successfully applied for the extraction and determination of nonsteroidal anti‐inflammatory drugs in complex matrices.  相似文献   

17.
In this work, a method for the analysis of benzoylurea insecticides, including hexaflumuron, flufenoxuron, lufenuron and chlorfluazuron, in tea samples by high‐performance liquid chromatography with Fe3O4‐hyperbranched polyester nanocomposite as the adsorbent for magnetic solid‐phase extraction was developed. The magnetic nanocomposite was prepared and characterized by infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy. The as‐prepared nanocomposite was used as a sorbent for the extraction and preconcentration of pesticide residues in tea samples. The extraction and desorption conditions, including mass ratios of raw materials, amount of sorbent, pH value, extraction time, and desorption time, were investigated. Under the final conditions chosen for the analysis, good linearity was obtained for all the tested compounds, with R2 values of at least 0.9979. The limits of detection were determined in the range of 0.15–0.3 μg/L. The recovery obtained from the analysis of tea samples with various spiked concentrations was between 90.7 and 98.4%, with relative standard deviations (n = 4) lower than 4.1%. Furthermore, the present approach was successfully applied to the quantitative determination of residues of benzoylurea insecticides in real samples.  相似文献   

18.
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.  相似文献   

19.
In this study, silica modified with a 30‐membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid–liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3‐dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle‐SPE–IL‐DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768–5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.  相似文献   

20.
Magnetic dispersive solid‐phase extraction followed by dispersive liquid?liquid microextraction coupled with gas chromatography/mass spectrometry was applied for the quantitative analysis of phenazopyridine in urinary samples. Magnetic dispersive solid‐phase extraction was carried out using magnetic graphene oxide nanoparticles modified by poly(thiophene‐pyrrole) copolymer. The eluting solvent of this step was used as the disperser solvent for the dispersive liquid?liquid microextraction procedure. To reach the maximum efficiency of the method, effective parameters including sorbent amount, adsorption time, type and volume of disperser and extraction solvents, pH of the sample solution, and ionic strength as well as desorption time, and approach were optimized, separately. Characterization of the synthesized sorbent was studied by utilizing infrared spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray analysis. Calibration curve was linear in the range of 0.5?250 ng/mL (R2 = 0.9988) with limits of detection and quantification of 0.1 and 0.5 ng/mL, respectively. Intra‐ and interday precisions (RSD%, n = 3) of the method were in the range of 4.6?5.4% and 4.0?5.5%, respectively, at three different concentration levels. Under the optimal condition, this method was successfully applied for the determination of phenazopyridine in human urine samples. The relative recoveries were obtained in the range of 85.0?89.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号