首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical evidence suggests that single factor models would not capture the full dynamics of stochastic volatility such that a marked discrepancy between their predicted prices and market prices exists for certain ranges (deep in‐the‐money and out‐of‐the‐money) of time‐to‐maturities of options. On the other hand, there is an empirical reason to believe that volatility skew fluctuates randomly. Based upon the idea of combining stochastic volatility and stochastic skew, this paper incorporates stochastic elasticity of variance running on a fast timescale into the Heston stochastic volatility model. This multiscale and multifactor hybrid model keeps analytic tractability of the Heston model as much as possible, while it enhances capturing the complex nature of volatility and skew dynamics. Asymptotic analysis based on ergodic theory yields a closed form analytic formula for the approximate price of European vanilla options. Subsequently, the effect of adding the stochastic elasticity factor on top of the Heston model is demonstrated in terms of implied volatility surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider the pricing of vulnerable options when the underlying asset follows a stochastic volatility model. We use multiscale asymptotic analysis to derive an analytic approximation formula for the price of the vulnerable options and study the stochastic volatility effect on the option price. A numerical experiment result is presented to demonstrate our findings graphically.  相似文献   

3.
We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.  相似文献   

4.
Over the past few years, model complexity in quantitative finance has increased substantially in response to earlier approaches that did not capture critical features for risk management. However, given the preponderance of the classical Black–Scholes model, it is still not clear that this increased complexity is matched by additional accuracy in the ultimate result. In particular, the last decade has witnessed a flurry of activity in modeling asset volatility, and studies evaluating different alternatives for option pricing have focused on European-style exercise. In this paper, we extend these empirical evaluations to American options, as their additional opportunity for early exercise may incorporate stochastic volatility in the pricing differently. Specifically, the present work compares the empirical pricing and hedging performance of the commonly adopted stochastic volatility model of Heston (Rev Financial Stud 6:327–343, 1993) against the traditional constant volatility benchmark of Black and Scholes (J Polit Econ 81:637–659, 1973). Using S&P 100 index options data, our study indicates that this particular stochastic volatility model offers enhancements in line with their European-style counterparts for in-the-money options. However, the most striking improvements are for out-of-the-money options, which because of early exercise are more valuable than their European-style counterparts, especially when volatility is stochastic.  相似文献   

5.
This work investigates the valuation of options when the underlying asset follows a mean-reverting log-normal process with a stochastic volatility that is driven by two stochastic processes with one persistent factor and one fast mean-reverting factor. Semi-analytical pricing formulas for European options are derived by means of multiscale asymptotic techniques. Numerical examples demonstrate the use of the model and the quality of the numerical scheme.  相似文献   

6.
Abstract

This paper studies the problem of understanding implied volatilities from options written on leveraged exchanged-traded funds (LETFs), with an emphasis on the relations between LETF options with different leverage ratios. We first examine from empirical data the implied volatility skews for LETF options based on the S&P 500. In order to enhance their comparison with non-leveraged ETFs, we introduce the concept of moneyness scaling and provide a new formula that links option implied volatilities between leveraged and unleveraged ETFs. Under a multiscale stochastic volatility framework, we apply asymptotic techniques to derive an approximation for both the LETF option price and implied volatility. The approximation formula reflects the role of the leverage ratio, and thus allows us to link implied volatilities of options on an ETF and its leveraged counterparts. We apply our result to quantify matches and mismatches in the level and slope of the implied volatility skews for various LETF options using data from the underlying ETF option prices. This reveals some apparent biases in the leverage implied by the market prices of different products, long and short with leverage ratios two times and three times.  相似文献   

7.
Generally, it is well known that the constant elasticity of variance (CEV) model fails to capture the empirical results verifying that the implied volatility of equity options displays smile and skew curves at the same time. In this study, to overcome the limitation of the CEV model, we introduce a new model, which is a generalization of the CEV model, and show that it can capture the smile and skew effects of implied volatility. Using an asymptotic analysis for two small parameters that determine the volatility shape, we obtain approximated solutions for option prices in the extended model. In addition, we demonstrate the stability of the solution for the expansion of the option price. Furthermore, we show the convergence rate of the solutions in Monte-Carlo simulation and compare our model with the CEV, Heston, and other extended stochastic volatility models to verify its flexibility and efficiency compared with these other models when fitting option data from the S&P 500 index.  相似文献   

8.
目的是对基于随机波动率模型的期权定价问题应用模糊集理论.主要思想是把波动率的概率表示转换为可能性表示,从而把关于股票价格的带随机波动率的随机过程简化为带模糊参数的随机过程.然后建立非线性偏微分方程对欧式期权进行定价.  相似文献   

9.
Abstract

We consider the Heston model with the stochastic interest rate of Cox–Ingersoll–Ross (CIR) type and more general models with stochastic volatility and interest rates depending on two CIR-factors; the price, volatility and interest rate may correlate. Time-derivative and infinitesimal generator of the process for factors that determine the dynamics of the interest rate and/or volatility are discretized. The result is a sequence of embedded perpetual options arising in the time discretization of a Markov-modulated Lévy model. Options in this sequence are solved using an iteration method based on the Wiener–Hopf factorization. Typical shapes of the early exercise boundary are shown, and good agreement of option prices with prices calculated with the Longstaff–Schwartz method and Medvedev–Scaillet asymptotic method is demonstrated.  相似文献   

10.
11.
In this work, an analytic pricing formula for floating strike lookback options under Heston’s stochastic volatility model is derived by means of the homotopy analysis method. The fixed strike lookback options can then be priced on the basis of the results of floating strike and the put–call parity relation for lookback options.  相似文献   

12.
In this paper, we consider a stochastic volatility model for pricing multi‐asset European options that are widely used in the real world, under the assumption that the volatilities are driven by different OU processes. Using the singular perturbation method for multi‐parameter and the boundary layer theory, we derive a uniform asymptotic expansion for the option prices, as well as the uniform error estimates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A new, simple algorithm of order 2 is presented to approximate weakly stochastic differential equations. It is then applied to the problem of pricing Asian options under the Heston stochastic volatility model.

2000 Mathematics Subject Classification, 65C30, 65C05.  相似文献   

14.
We extend the Heston stochastic volatility model to a Hilbert space framework. The tensor Heston stochastic variance process is defined as a tensor product of a Hilbert-valued Ornstein–Uhlenbeck process with itself. The volatility process is then defined by a Cholesky decomposition of the variance process. We define a Hilbert-valued Ornstein–Uhlenbeck process with Wiener noise perturbed by this stochastic volatility, and compute the characteristic functional and covariance operator of this process. This process is then applied to the modeling of forward curves in energy and commodity markets. Finally, we compute the dynamics of the tensor Heston volatility model when the generator is bounded, and study its projection down to the real line for comparison with the classical Heston dynamics.  相似文献   

15.
The Heston model of stochastic volatility has been widely adopted in modern finance, especially in option pricing. Usually, the model can be classified as being in one of two different regimes: the fast mean-reverting regime and the slow mean-reverting regime. Different approximations are needed for each regime. We show a surprising result: the solution in both regimes can be approximated by an identical expression. The predictions of the approximation are in excellent agreement with the numerical solutions of the Heston model in both regimes.  相似文献   

16.
In this article, we study a long memory stochastic volatility model (LSV), under which stock prices follow a jump-diffusion stochastic process and its stochastic volatility is driven by a continuous-time fractional process that attains a long memory. LSV model should take into account most of the observed market aspects and unlike many other approaches, the volatility clustering phenomenon is captured explicitly by the long memory parameter. Moreover, this property has been reported in realized volatility time-series across different asset classes and time periods. In the first part of the article, we derive an alternative formula for pricing European securities. The formula enables us to effectively price European options and to calibrate the model to a given option market. In the second part of the article, we provide an empirical review of the model calibration. For this purpose, a set of traded FTSE 100 index call options is used and the long memory volatility model is compared to a popular pricing approach – the Heston model. To test stability of calibrated parameters and to verify calibration results from previous data set, we utilize multiple data sets from NYSE option market on Apple Inc. stock.  相似文献   

17.
In this work, we investigate the numerical approximation of the one‐dimensional pressureless gases system. After briefly recalling the mathematical framework of the duality solutions introduced by Bouchut and James (Comm. Partial Differential Equations 24 (1999), 2173–2189), we point out that the upwind scheme for density and momentum does not satisfy the one‐sided Lipschitz (OSL) condition on the expansion rate required for the duality solutions. Then we build a diffusive scheme which allows the OSL condition to be recovered by following the strategy described by Boudin (SIAM J Math Anal 32 (2000), 172–193) for the continuous model. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

18.
In this paper, we apply singular perturbation techniques to price European puts with a stochastic volatility model, and derive a simple and elegant analytical formula as an approximation for the value of European put options. In contrast to the existing Heston’s semi-analytical formula, this approximation has the following unique feature: the latter only involves the standard normal distribution function, which is as fast and easy to implement as the Black–Scholes formula; whereas the former requires the evaluation of a logarithm with a complex argument during the involved Fourier inverse transform, which may sometimes result in numerical instability. Various numerical experiments suggest that our new formula can achieve a high order of accuracy for a large class of option derivatives with relatively short tenor.  相似文献   

19.
In this paper we study a general concept of nonuniform exponential dichotomy in mean square for stochastic skew-evolution semiflows in Hilbert spaces. We obtain a variant for the stochastic case of some well-known results, of the deterministic case, due to R. Datko: Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3(1972), 428–445. Our approach is based on the extension of some techniques used in the deterministic case for the study of asymptotic behavior of skew-evolution semiflows in Banach spaces.  相似文献   

20.
Multiscale stochastic volatilities models relax the constant volatility assumption from Black-Scholes option pricing model. Such models can capture the smile and skew of volatilities and therefore describe more accurately the movements of the trading prices. Christoffersen et al. Manag Sci 55(2):1914–1932 (2009) presented a model where the underlying price is governed by two volatility components, one changing fast and another changing slowly. Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) transformed Christoffersen’s model and computed an approximate formula for pricing American options. They used Duhamel’s principle to derive an integral form solution of the boundary value problem associated to the option price. Using method of characteristics, Fourier and Laplace transforms, they obtained with good accuracy the American option prices. In a previous research of the authors (Canhanga et al. 2014), a particular case of Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013) model is used for pricing of European options. The novelty of this earlier work is to present an asymptotic expansion for the option price. The present paper provides experimental and numerical studies on investigating the accuracy of the approximation formulae given by this asymptotic expansion. We present also a procedure for calibrating the parameters produced by our first-order asymptotic approximation formulae. Our approximated option prices will be compared to the approximation obtained by Chiarella and Ziveyi Appl Math Comput 224:283–310 (2013).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号