首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The incorporation of metal–organic frameworks (MOFs) into membrane‐shaped architectures is of great importance for practical applications. The currently synthesized MOF‐based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF‐based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF‐based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process.  相似文献   

2.
Hybridization of metal–organic frameworks (MOFs) and polymers into composites yields materials that display the exceptional properties of MOFs with the robustness of polymers. However, the realization of MOF–polymer composites requires efficient dispersion and interactions of MOF particles with polymer matrices, which remains a significant challenge. Herein, we report a simple, scalable, bench‐top approach to covalently tethered nylon–MOF polymer composite materials through an interfacial polymerization technique. The copolymerization of a modified UiO‐66‐NH2 MOF with a growing polyamide fiber (PA‐66) during an interfacial polymerization gave hybrid materials with up to around 29 weight percent MOF. The covalent hybrid material demonstrated nearly an order of magnitude higher catalytic activity for the breakdown of a chemical warfare simulant (dimethyl‐4‐nitrophenyl phosphate, DMNP) compared to MOFs that are non‐covalently, physically entrapped in nylon, thus highlighting the importance of MOF–polymer hybridization.  相似文献   

3.
Reported herein are two new polymorphic Co‐MOFs (CTGU‐5 and ‐6) that can be selectively crystallized into the pure 2D or 3D net using an anionic or neutral surfactant, respectively. Each polymorph contains a H2O molecule, but differs dramatically in its bonding to the framework, which in turn affects the crystal structure and electrocatalytic performance for hydrogen evolution reaction (HER). Both experimental and computational studies find that 2D CTGU‐5 which has coordinates water and more open access to the cobalt site has higher electrocatalytic activity than CTGU‐6 with the lattice water. The integration with co‐catalysts, such as acetylene black (AB) leads to a composite material, AB&CTGU‐5 (1:4) with very efficient HER catalytic properties among reported MOFs. It exhibits superior HER properties including a very positive onset potential of 18 mV, low Tafel slope of 45 mV dec−1, higher exchange current density of 8.6×10−4 A cm−2, and long‐term stability.  相似文献   

4.
Hierarchically porous metal–organic frameworks (HP‐MOFs) have attracted great attention owing to their advantages over microporous MOFs in some applications. Despite many attempts, the development of a facile approach to generate HP‐MOFs remains a challenge. Herein we develop a new strategy, namely the modulation of cation valence, to create hierarchical porosity in MOFs. Some of the CuII metal nodes in MOFs can be transformed into CuI via reducing vapor treatment (RVT), which partially changes the coordination mode and thus breaks coordination bonds, resulting in the formation of HP‐MOF based on the original microporous MOF. Both the experimental results and the first‐principles calculation show that it is easy to tailor the amount of CuI and subsequent hierarchical porosity by tuning the RVT duration. It is found that the resultant HP‐MOFs perform much better in the capture of aromatic sulfides than the original microporous MOF.  相似文献   

5.
A crack‐free sub‐nanometer composite structure for the study of ion transfer was constructed by in situ growth of ZIF‐90 [Zn(ICA)2, ICA=Imidazole‐2‐carboxaldehyde] on the tip of a glass nanopipette. The potential‐driven ion transfer through the sub‐nanometer channels in ZIF‐90 is strongly influenced by the pH of the solution. A rectification ratio over 500 is observed in 1 m KCl solution under alkaline conditions (pH 11.58), which is the highest value reported under such a high salt concentration. Fluorescence experiments show the super‐high rectification ratio under alkaline conditions results from the strong electrostatic interaction between ions and the sub‐nanometer channels of ZIF‐90. In addition to providing a general pathway for further study of mass‐transfer process through sub‐nanometer channels, the approach enable all kinds of metal–organic frameworks (MOFs) to be used as ionic permselectivity materials in nanopore‐based analysis.  相似文献   

6.
The secondary building units in metal–organic frameworks (MOFs) are commonly well‐defined metal–oxo clusters or chains with very limited structural strain. Herein, the structurally deformable haloplumbate units that are often observed in organolead halide perovskites have been successfully incorporated into MOFs. The resultant materials are a rare class of isoreticular MOFs exhibiting large Stokes‐shifted broadband white‐light emission, which is probably induced by self‐trapped excitons from electron–phonon coupling in the deformable, zigzag [Pb2X3]+ (X=Cl, Br, or I) chains. In contrast, MOFs with highly symmetric, robust haloplumbate chains only exhibit narrow UV–blue photoemission. The designed MOF‐based intrinsic white‐light photoemitters have a number of advantages over hybrid inorganic–organic perovskites in terms of stability and tunability, including moisture resistance, facile functionalization of photoactive moieties onto the organic linkers, introduction of luminescent guests.  相似文献   

7.
We transformed the hydrophilic metal–organic framework (MOF) UiO‐67 into hydrophobic UiO‐67‐R s (R=alkyl) by introducing alkyl chains into organic linkers, which not only protected hydrophilic Zr6O8 clusters to make the MOF interspace superoleophilic, but also led to a rough crystal surface beneficial for superhydrophobicity. The UiO‐67‐R s displayed high acid, base, and water stability, and long alkyl chains offered better hydrophobicity. Good hydrophobicity/oleophilicity were also possible with mixed‐ligand MOFs containing metal‐binding ligands. Thus, a (super)hydrophobic MOF catalyst loaded with Pd centers efficiently catalyzed Sonogashira reactions in water at ambient temperature. Studies of the hydrophobic effects of the coordination interspace and the outer surface suggest a simple de novo strategy for the synthesis of superhydrophobic MOFs that combine surface roughness and low surface energy. Such MOFs have potential for environmentally friendly catalysis and water purification.  相似文献   

8.
Mixing molecular building blocks in the solid solution manner is a valuable strategy to obtain structures and properties in between the isostructural parent metal–organic frameworks (MOFs). We report nonlinear/synergistic solid‐solution effects using highly related yet non‐isostructural, phosphorescent CuI triazolate frameworks as parent phases. Near the phase boundaries associated with conformational diversity and ligand heterogeneity, the porosity (+150 %) and optical O2 sensitivity (410 times, limit of detection 0.07 ppm) can be drastically improved from the best‐performing parent MOFs and even exceeds the records hold by precious‐metal complexes (3 ppm) and C70 (0.2 ppm).  相似文献   

9.
The reported metal–organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal‐free N‐heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC‐functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2, thus achieving quantitative (>99 %) methanol yield. Density‐functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC‐silane adduct. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.  相似文献   

10.
Hydrophobization of metal‐organic frameworks (MOFs) is important to push forward their practical use and thus has attracted increasing interest. In contrast to the previous reports, which mainly focused on the modification of organic ligands in MOFs, herein, we reported a novel strategy to decorate the metal‐oxo nodes of MOFs with phenylsilane to afford super‐hydrophobic NH2‐UiO‐66(Zr), which shows highly improved base resistance and holds great promise in versatile applications, such as organic/water separation, self‐cleaning, and liquid‐marble fabrication. This work demonstrates the first attempt at metal‐oxo node modification for super‐hydrophobic MOFs, advancing a new concept in the design of MOFs with controlled wettability for practical applications.  相似文献   

11.
Defect engineering is a versatile approach to modulate band and electronic structures as well as materials performance. Herein, metal–organic frameworks (MOFs) featuring controlled structural defects, namely UiO‐66‐NH2‐X (X represents the molar equivalents of the modulator, acetic acid, with respect to the linker in synthesis), were synthesized to systematically investigate the effect of structural defects on photocatalytic properties. Remarkably, structural defects in MOFs are able to switch on the photocatalysis. The photocatalytic H2 production rate presents a volcano‐type trend with increasing structural defects, where Pt@UiO‐66‐NH2‐100 exhibits the highest activity. Ultrafast transient absorption spectroscopy unveils that UiO‐66‐NH2‐100 with moderate structural defects possesses the fastest relaxation kinetics and the highest charge separation efficiency, while excessive defects retard the relaxation and reduce charge separation efficiency.  相似文献   

12.
Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core–satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.  相似文献   

13.
While titanium‐based metal–organic frameworks (MOFs) have been widely studied for their (photo)catalytic potential, only a few TiIV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK‐47 is now presented, the first Ti carboxylate MOF based on sheets of TiIVO6 octahedra, which can be synthesized with a range of different linkers. COK‐47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X‐ray total scattering, EXAFS, and solid‐state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  相似文献   

14.
Modulation and templating are two synthetic techniques that have garnered significant attention over the last several years for the preparation of hierarchically porous metal–organic frameworks (HP‐MOFs). In this study, by using fatty acids with different lengths and concentrations as dual‐functional modulators/templates, we were able to obtain HP‐MOFs with tunable mesopores that exhibit different pore diameters and locations. We found that the length and concentration of the fatty acids can determine if micelle formation occurs, which in turn dictates the porosity of the resulting HP‐MOFs. The HP‐MOFs with different mesopores differed in their performance in gas uptake and dye adsorption, and the structure–performance relationships were ascribed to the pore diameters and locations. This approach could provide a potentially universal method to efficiently introduce hierarchal mesopores into existing microporous MOF adsorbents with tunable properties.  相似文献   

15.
Metal‐organic frameworks (MOFs) are an emerging class of porous materials with attractive properties, however, their practical applications are heavily hindered by their fragile nature. We report herein an effective strategy to transform fragile coordination bonds in MOFs into stable covalent organic bonds under mild annealing decarboxylative coupling reaction conditions, which results in highly stable organic framework materials. This strategy successfully endows intrinsic framework skeletons, porosity and properties of the parent MOFs in the daughter organic framework materials, which exhibit excellent chemical stability under harsh catalytic conditions. Therefore, this work opens a new avenue to synthesize stable organic framework materials derived from MOFs for applications in different fields.  相似文献   

16.
Metal–organic frameworks (MOF) materials are promising materials for gas separation, but their application still faces various challenges. A strategy is now reported for introducing subunits of MOFs into traditional zeolite frameworks to obtain applicable adsorbents with advantages of both zeolites and MOFs. The subunits of ZIFs were introduced into zeolite Y and zeolite ZSM‐5 for CH4/N2 separation. Both the molecular simulation and experimental results validated that the IAST CH4/N2 selectivity of the resulting samples greatly improved (above 8, at 100 kPa and 25 °C) with the incorporation of ZIF subunits into zeolites structure, and the selectivities were obviously higher than that of zeolites and even better than that of ZIFs. This strategy not only gave rise to an efficient adsorbent for CH4/N2 separation but also provided ideas for design of other adsorption and separation materials.  相似文献   

17.
The pore size enlargement and structural stability have been recognized as two crucial targets, which are rarely achieved together, in the development of metal–organic frameworks (MOFs). Herein, we have developed a versatile modulator‐induced defect‐formation strategy, in the presence of monocarboxylic acid as a modulator and an insufficient amount of organic ligand, successfully realizing the controllable synthesis of hierarchically porous MOFs (HP‐MOFs) with high stability and tailorable pore characters. Remarkably, the integration of high stability and large mesoporous property enables these HP‐MOFs to be important porous platforms for applications involving large molecules, especially in catalysis.  相似文献   

18.
The integration of heterometallic units and nanostructures into metal–organic frameworks (MOFs) used for the oxygen evolution reaction (OER) can enhance the electrocatalytic performance and help elucidate underlying mechanisms. We have synthesized a series of stable MOFs (CTGU‐10a1–d1) based on trinuclear metal carboxylate clusters and a hexadentate carboxylate ligand with a (6,6)‐connected nia net. We also present a strategy to synthesize hierarchical bimetallic MOF nanostructures (CTGU‐10a2–d2). Among these, CTGU‐10c2 is the best material for the OER, with an overpotential of 240 mV at a current density of 10 mA cm?2 and a Tafel slope of 58 mV dec?1. This is superior to RuO2 and confirms CTGU‐10c2 as one of the few known high‐performing pure‐phase MOF‐OER electrocatalysts. Notably, bimetallic CTGU‐10b2 and c2 show an improved OER activity over monometallic CTGU‐10a2 and d2. Both DFT and experiments show that the remarkable OER performance of CTGU‐10c2 is due to the presence of unsaturated metal sites, a hierarchical nanobelt architecture, and the Ni–Co coupling effect.  相似文献   

19.
Lanthanide metal–organic frameworks (Ln‐MOFs) have received much attention owing to their structural tunability and widely photofunctional applications. However, successful examples of Ln‐MOFs with well‐defined photonic performances at micro‐/nanometer size are still quite limited. Herein, self‐assemblies of 1,3,5‐benzenetricarboxylic acid (BTC) and lanthanide ions afford isostructural crystalline Ln‐MOFs. Tb‐BTC, Eu@Tb‐BTC, and Eu‐BTC have 1D microrod morphologies, high photoluminescence (PL) quantum yields, and different emission colors (green, orange, and red). Spatially PL resolved spectra confirm that Ln‐MOF microrods exhibit an optical waveguide effect with low waveguide loss coefficient (0.012≈0.033 dB μm−1) during propagation. Furthermore, these microrods feature both linear and chiral polarized photoemission with high anisotropy.  相似文献   

20.
Efficient hydrogen evolution via electrocatalytic water splitting holds great promise in modern energy devices. Herein, we demonstrate that the localized surface plasmon resonance (LSPR) excitation of Au nanorods (NRs) dramatically improves the electrocatalytic hydrogen evolution activity of CoFe‐metal–organic framework nanosheets (CoFe‐MOFNs), leading to a more than 4‐fold increase of current density at ?0.236 V (vs. RHE) for Au/CoFe‐MOFNs composite under light irradiation versus in dark. Mechanistic investigations reveal that the hydrogen evolution enhancement can be largely attributed to the injection of hot electrons from AuNRs to CoFe‐MOFNs, raising the Fermi level of CoFe‐MOFNs, facilitating the reduction of H2O and affording decreased activation energy for HER. This study highlights the superiority of plasmonic excitation on improving electrocatalytic efficiency of MOFs and provides a novel avenue towards the design of highly efficient water‐splitting systems under light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号