首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advances in the development of column-based analytical separations are strongly linked to the development of novel materials. Stationary phases for chromatographic separation are usually based on silica and polymer materials. Nevertheless, recent advances have been made using porous crystalline reticular materials, such as metal-organic frameworks and covalent organic frameworks. However, the direct packing of these materials is often limited due to their small crystal size and nonspherical shape. In this review, recent strategies to incorporate porous crystalline materials as stationary phases for liquid-phase separations are covered. Moreover, we discuss the potential future directions in their development and integration into suitable supports for analytical applications. Finally, we discuss the main challenges to be solved to take full advantage of these materials as stationary phases for analytical separations.  相似文献   

2.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

3.
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed‐phase high‐performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high‐performance liquid chromatography  相似文献   

4.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

5.
Porogens are key components required for the preparation of porous polymer monoliths for application in separation science. Porogens determine the stability, selectivity, and permeability of polymer monoliths. This review summarizes the role of porogens in the preparation of porous polymer monoliths with a focus on clear understanding of effect of porogens on morphological properties, porosity, surface area, mechanical stability, and permeability of monoliths, particularly targeting the field of separation science. This review also includes the use of different types of porogens with the focus on various approaches used to set criteria for their systematic selection, including porogen‐free techniques recently used for synthesis of porous monoliths. It discusses the current state‐of‐the‐art applications of porogens in column preparation as well as where the future developments in this field may be directed.  相似文献   

6.
Polymer monoliths are promising materials for sample preparation due to their high porosity, pH stability, and simple preparation. The use of melamine formaldehyde foams has been reported as an effective support to prepare highly robust silica and polymer monoliths. Herein, divinylbenzene monoliths based on a 50:50 (%, w/w) crosslinker/porogen ratio have been nested within a melamine-formaldehyde sponge, resulting in monoliths with a surface area higher than 400 m2/g. The extraction performance of these monoliths was evaluated for the extraction of endocrine-disrupting bisphenols from aqueous solutions. We evaluated for the first time the versatility of sponge-nested polymer monoliths by comparing three different extraction modes (vortex mixing, magnetic stirring, and orbital shaking). Vortex mixing showed a comparable recovery of bisphenols (39%–81%) in a shorter extraction time (30 min, instead of 2 h). In addition, the robustness of the sponge-nested polymer monoliths was demonstrated for the first time by reshaping a larger monolithic cube (0.125 cm3) into four smaller pieces (4 × 0.03125 cm3) leading to a 16%–21% increase in extraction efficiency. This effect was attributed to an increase in the effective contact area with the sample, obtaining a higher analyte extraction capacity.  相似文献   

7.
A bipyridine‐based covalent organic polymer (COP) was successfully synthesized by condensation of trimesoyl chloride (TMC) and 2,2′‐bipyridine‐5,5′‐diamine (Bpy) under ambient conditions. This material was modified by coordination of PdCl2 to COP framework, affording a hybrid material, Pd@TMC‐Bpy COP, which was applied as a highly efficient heterogeneous catalyst for Suzuki‐Miyaura reaction under ligand‐free conditions in ethyl lactate. The catalyst could be reused for five times without obvious loss of its activity.  相似文献   

8.
Electroactive organic molecules have received a lot of attention in the field of electronics because of their fascinating electronic properties, easy functionalization and potential low cost towards their implementation in electronic devices. In recent years, electroactive organic molecules have also emerged as promising building blocks for the design and construction of crystalline porous frameworks such as metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) for applications in electronics. Such porous materials present certain additional advantages such as, for example, an immense structural and functional versatility, combination of porosity with multiple electronic properties and the possibility of tuning their physical properties by post-synthetic modifications. In this Review, we summarize the main electroactive organic building blocks used in the past few years for the design and construction of functional porous materials (MOFs and COFs) for electronics with special emphasis on their electronic structure and function relationships. The different building blocks have been classified based on the electronic nature and main function of the resulting porous frameworks. The design and synthesis of novel electroactive organic molecules is encouraged towards the construction of functional porous frameworks exhibiting new functions and applications in electronics.  相似文献   

9.
We report herein an efficient, fast, and simple synthesis of an imine‐based covalent organic framework (COF) at room temperature (hereafter, RT‐COF‐1 ). RT‐COF‐1 shows a layered hexagonal structure exhibiting channels, is robust, and is porous to N2 and CO2. The room‐temperature synthesis has enabled us to fabricate and position low‐cost micro‐ and submicropatterns of RT‐COF‐1 on several surfaces, including solid SiO2 substrates and flexible acetate paper, by using lithographically controlled wetting and conventional ink‐jet printing.  相似文献   

10.
Most often, in bioseparations involving charged macromolecules, the chromatographic systems have low Reynolds and high Peclet numbers. For such systems, an expression is developed and presented in this work for evaluating the throughput in polymeric monoliths where ion-exchange adsorption occurs, as a function of (i) the pressure drop along the length of the monolith, (ii) the functional form and width of the throughpore-size distribution of the monolith, and (iii) the magnitude of the zeta potential on the surface of the throughpores of the monolith. Gaussian and log-normal throughpore-size distributions whose mean throughpore-size and standard deviation values are based on experimentally measured throughpore-size distribution data by mercury porosimetry employed on polymeric monoliths are used in this work, and their effect on the throughput relative to that obtained from a polymeric monolith having a uniform throughpore-size distribution is studied for different values of the ratio of the standard deviation to the mean throughpore-size. The results indicate that relatively modest increases in the throughput, when compared with the throughput that could be achieved in a polymeric monolith having a uniform throughpore-size distribution, could be obtained in polymeric monoliths having disperse throughpore-size distributions, and the magnitude of the increase becomes larger when the disperse distribution is skewed to larger throughpore sizes. Furthermore, the results of this work indicate that, under certain conditions, relatively modest increases in the throughput of a charged analyte could also be achieved by altering the value of the zeta potential on the surface of the throughpores of the monolith. Due to the difficulties inherent in controlling the functional form and width of the throughpore-size distribution during the synthesis of polymeric monoliths, it would appear to be more practical to increase the value of the throughput of a charged analyte by altering the value of the zeta potential through prudent selection of the ion-exchange surface functional groups and fine-tuned with the pH of the mobile phase. Thus, for ion-exchange chromatography systems, the zeta potential could be considered an important parameter for column designers and operators to manipulate, since its alteration could increase the through-put of a charged analyte in polymeric monoliths or in columns packed with charged particles.  相似文献   

11.
Owing to their favorable porous structure with pore size distribution shifted towards large flow-through pores, organic polymer monoliths have been mainly employed for the separation of macromolecules in gradient elution liquid chromatography. The absence of significant amounts of small pores with a stagnant mobile phase and the resulting low surface area were considered as the main reason for their poor behavior in the isocratic separation of small molecules. Several recent efforts have improved the separation power of organic polymer monoliths for small molecules offering column efficiency up to tens of thousands of plates per meter. These attempts include optimization of the composition of polymerization mixture, including the variation of functional monomer, the cross-linking monomer, and the porogen solvents mixture, adjustment of polymerization temperature, and time. Additionally, post-polymerization modifications including hypercross-linking and the use of carbon nanostructures showed significant improvement in the column properties. This review describes recent developments in the preparation of organic polymer monoliths suitable for the separation of small molecules in the isocratic mode as well as the main factors affecting the column efficiency.  相似文献   

12.
Porous polymer monoliths have been used to develop an online solid‐phase extraction with liquid chromatography method for determination of dopamine in urine as well as for a continuous monitoring of dopamine in flowing system. A polymerization mixture containing 4‐vinylphenylboronic acid monomer has been used to prepare a trapping column based on specific ring formation reaction with dopamine cis‐diol functionality. Additionally, a monolithic stationary phase with zwitterion functionality has been used to prepare capillary column for the separation of dopamine. Experimental conditions including molarity, pH, and flow rate of the loading buffer together with a valve switching time have been optimized to provide the highest recovery for dopamine. Experimental setup has been used to determine dopamine in a urine. By using both calibration curve and standard addition method, the dopamine level was determined to be 1.19 and 1.28 mg/L, respectively. Further, we have used experimental design to optimize coupling of two extraction monolithic loops to separation capillary column with monolithic phase for a comprehensive monitoring of dopamine. After multivariate analysis, sample loading flow‐rate and a flow‐rate of flushing buffer were selected as the most significant variables. Optimized experimental setup was applied to continuously monitor dopamine degradation.  相似文献   

13.
Novel porous polymers with 4-ethoxy-3,6-di-tert-butyl-o-benzoquinone grafted to the porous surface have been prepared via the secondary functionalization of porous polymer monoliths obtained by the photopolymerization of oligo(carbonate dimethacrylate) and hydroxyethyl methacrylate in methanol solution. These quinone-functionalized polymers have been applied for the synthesis of triphenylantimony(V) catecholate-containing polymers by the oxidative addition reaction of quinone moieties with SbPh3. The obtained antimony-containing porous polymeric material is able to reversibly bind molecular oxygen in nearly quantitative yield. The rate of molecular oxygen sorption is 900 times higher for the porous material than that for the same film material and comparable with the process rate in solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
高分子水凝胶是具有三维网络结构的一种新型材料,吸水溶胀后质地柔软,与生物体组织相似,生物相容性和生物可降解性良好,具有一定的力学性能,因此在医学领域具有重要的应用。本文对高分子水凝胶在医学领域的研究热点进行了归纳总结,并重点阐述了高分子水凝胶在药物输送、组织工程支架、伤口敷料和生物传感器等医学领域应用的最新研究进展,并对其未来发展趋势进行了展望。  相似文献   

15.
Facile fabrication of nanocatalysts consisting of metal nanoparticles (NPs) anchored on a functional support is highly desirable, yet remains challenging. Covalent organic frameworks (COFs) provide an emerging materials platform for structural control and functional design. Here, a facile one-pot in situ reduction approach is demonstrated for the encapsulation of small Pd NPs into the shell of COF-derived hollow polyamine spheres (Pd@H-PPA). In the one-pot synthetic process, the nucleation and growth of Pd NPs in the cavities of the porous shell take place simultaneously with the reduction of imine linkages to secondary amine groups. Pd@H-PPA shows a significantly enhanced catalytic activity and recyclability in the tandem dehydrogenation of ammonia borane and selective hydrogenation of nitroarenes through an adsorption–activation–reaction mechanism. The strong interactions of the secondary amine linkage with borane and nitroarene molecules afford a positive synergy to promote the catalytic reaction. Moreover, the hierarchical structure of Pd@H-PPA allows the accessibility of active Pd NPs to reactants.  相似文献   

16.
In this work, an open‐tubular capillary liquid‐phase column was prepared by modifying chain polymer on the inner surface of capillary and chemical bonding of metal organic frameworks, NH2‐UiO‐66, to the brushes of chain polymer (poly(glycidyl methacrylate)). Besides advantages of facial preparation and good permeability, the chain polymer effectively increases the modification amount of NH2‐UiO‐66 nanoparticles to increase the phase ratio of open‐tubular capillary column and enhance the interactions with analytes. The results of scanning electron microscope energy‐dispersive X‐ray spectra indicated that NH2‐UiO‐66 nanoparticles were successfully bonded to the chain polymer. Because of the hydrophobic interaction and hydrogen bonding interaction between the analytes and the ligand of NH2‐UiO‐66, different analytes were well separated on the NH2‐UiO‐66‐modified poly(glycidyl methacrylate) capillary (1.12 m × 25 μm id × 365 μm od) with the high absolute column efficiency reaching 121 477 plates, benefiting from an open‐tubular column and low mass transfer resistance provided by polymer brush and metal–organic framework crystal. The relative standard deviations of the retention time for run‐to‐run, day‐to‐day, and column‐to‐column (= 3) runs are below 4.28%, exhibiting good repeatability. Finally, the column was successfully applied to separation of flavonoids in licorice.  相似文献   

17.
《中国化学》2018,36(8):754-764
Two‐dimensional (2D) metal‐organic layers (MOLs) are the 2D version of metal‐organic frameworks (MOFs) with nanometer thickness in one dimension. MOLs are also known as 2D‐MOFs, 2D coordination polymers, ultrathin MOF nanosheets (UMOFNs) or coordination nanosheets in literature. This new category of 2D materials has attracted a lot of interests because of the opportunity in combining molecular chemistry, surface/interface chemistry and material chemistry of low dimensional materials in these systems. Several synthetic strategies have been developed for the construction of 2D MOLs, but the general synthesis of MOLs still presents a challenge. This tutorial level review summarizes the recent progress in the fabrication of novel 2D MOLs and aims to highlight challenges in this field.  相似文献   

18.
The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti–6Al–4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69–76 (for 6–8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73–77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm.  相似文献   

19.
Framework materials have attracted intense interest for gas storage, separations, catalysis, and other applications as a consequence of their periodicity, high specific surface area, and rational synthesis. Cocrystallizing multiple monomers with identical linking chemistry represents an emerging route to access materials with increased complexity and advanced functions. This Concept Article highlights three strategies for framework synthesis that employ mixtures of monomers with 1) identical linking geometries, 2) different linking geometries, or 3) in which one monomer is truncated with respect to the other. These approaches offer a diverse toolbox to modify framework topology, incorporate active functionality, and rationally control crystallite size and morphology.  相似文献   

20.
通过改性由酸蚀二维蛭石制备的二维二氧化硅,得到带正电荷的二维介孔二氧化硅(PSN+)纳米片,并将PSN+用作聚环氧乙烷(PEO)基固体聚合物电解质(SPEs)的填料。由于PSN+具有丰富的正电荷,PSN+与锂盐解离的阴离子能够有效结合,从而促进锂离子的运输,获得较好的锂离子转移数。在50℃时,基于PSN+的SPEs表现出较高的离子电导率(7.5×10-5 S·cm-1),锂离子迁移数为0.30,稳定电压窗为4.41 V。因此,组装后的LiFePO4锂电池在50℃、0.2C下具有优异的初始放电比容量(155.7 mAh·g-1),在循环100次后容量保持率为97.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号